{"title":"Reduced Order Characterization of Nonlinear Oscillations Using an Adaptive Phase-Amplitude Coordinate Framework","authors":"Dan Wilson, Kai Sun","doi":"10.1137/23m1551699","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 470-504, March 2024. <br/> Abstract. We propose a general strategy for reduced order modeling of systems that display highly nonlinear oscillations. By considering a continuous family of forced periodic orbits defined in relation to a stable fixed point and subsequently leveraging phase-amplitude-based reduction strategies, we arrive at a low order model capable of accurately capturing nonlinear oscillations resulting from arbitrary external inputs. In the limit that oscillations are small, the system dynamics relax to those obtained from local linearization, i.e., that can be fully described using linear eigenmodes. For larger amplitude oscillations, the behavior can be understood in terms of the dynamics of a small number of nonlinear modes. We illustrate the proposed strategy in a variety of examples yielding results that are substantially better than those obtained using standard linearization-based techniques.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1551699","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 470-504, March 2024. Abstract. We propose a general strategy for reduced order modeling of systems that display highly nonlinear oscillations. By considering a continuous family of forced periodic orbits defined in relation to a stable fixed point and subsequently leveraging phase-amplitude-based reduction strategies, we arrive at a low order model capable of accurately capturing nonlinear oscillations resulting from arbitrary external inputs. In the limit that oscillations are small, the system dynamics relax to those obtained from local linearization, i.e., that can be fully described using linear eigenmodes. For larger amplitude oscillations, the behavior can be understood in terms of the dynamics of a small number of nonlinear modes. We illustrate the proposed strategy in a variety of examples yielding results that are substantially better than those obtained using standard linearization-based techniques.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.