Evaluating Impacts of Biosynthetic Silver Nanoparticles on Morphophysiological Responses in Barley (Hordeum vulgare L.)

4区 材料科学 Q2 Materials Science Journal of Nanomaterials Pub Date : 2024-01-27 DOI:10.1155/2024/7524774
Hassan O. Shaikhaldein, Fahad Al-Qurainy, Khalid A. Babiker, Mohammad Nadeem, Salim Khan, Mohamed Tarroum, Abdalrhaman M. Salih
{"title":"Evaluating Impacts of Biosynthetic Silver Nanoparticles on Morphophysiological Responses in Barley (Hordeum vulgare L.)","authors":"Hassan O. Shaikhaldein, Fahad Al-Qurainy, Khalid A. Babiker, Mohammad Nadeem, Salim Khan, Mohamed Tarroum, Abdalrhaman M. Salih","doi":"10.1155/2024/7524774","DOIUrl":null,"url":null,"abstract":"In recent years, nanotechnology has shown promising potential to enhance sustainable agriculture. Besides their use as antifungal and antimicrobial agents, silver nanoparticles (AgNPs) are the most widespread nanomaterials and are found in a capacious range of agrocommercial products. This study was designed to investigate the responses of morphophysiological characteristics in barley (<i>Hordeum vulgare</i> L.) to biologically synthesized silver nanoparticles. Spherical shapes with 8–20 nm size AgNPs at different concentrations (0, 50, 100, 150, 200, and 250 mg/L) were applied to barley plants in a hydroponic system. Following 7 days of sowing, the growth performance, chlorophyll contents, oxidative damage, and the activity level of antioxidant enzymes were quantified in different parts of the plant. The results indicated a remarkable boost in the growth performance and chlorophyll contents of barley plants up to a concentration of 150 mg/L. Interestingly, the levels of proline, lipid peroxidation, enzymes; superoxide dismutase (SOD), catalase (CAT), (APX), and (GR) activities were enhanced significantly in response to all AgNPs treatments. In general, the application of AgNPs substantially improved the growth and related morphophysiological attributes in barley. Our results provide new insights with respect to the effects of AgNPs on barley growth and their potential applications in increasing the performance of other crop species.","PeriodicalId":16442,"journal":{"name":"Journal of Nanomaterials","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2024/7524774","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, nanotechnology has shown promising potential to enhance sustainable agriculture. Besides their use as antifungal and antimicrobial agents, silver nanoparticles (AgNPs) are the most widespread nanomaterials and are found in a capacious range of agrocommercial products. This study was designed to investigate the responses of morphophysiological characteristics in barley (Hordeum vulgare L.) to biologically synthesized silver nanoparticles. Spherical shapes with 8–20 nm size AgNPs at different concentrations (0, 50, 100, 150, 200, and 250 mg/L) were applied to barley plants in a hydroponic system. Following 7 days of sowing, the growth performance, chlorophyll contents, oxidative damage, and the activity level of antioxidant enzymes were quantified in different parts of the plant. The results indicated a remarkable boost in the growth performance and chlorophyll contents of barley plants up to a concentration of 150 mg/L. Interestingly, the levels of proline, lipid peroxidation, enzymes; superoxide dismutase (SOD), catalase (CAT), (APX), and (GR) activities were enhanced significantly in response to all AgNPs treatments. In general, the application of AgNPs substantially improved the growth and related morphophysiological attributes in barley. Our results provide new insights with respect to the effects of AgNPs on barley growth and their potential applications in increasing the performance of other crop species.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估生物合成银纳米粒子对大麦(Hordeum vulgare L.)形态生理反应的影响
近年来,纳米技术在促进可持续农业方面显示出了巨大的潜力。银纳米粒子(AgNPs)除了用作抗真菌剂和抗菌剂外,还是最广泛使用的纳米材料,可广泛应用于各种农用商业产品中。本研究旨在调查大麦(Hordeum vulgare L.)的形态生理特征对生物合成的银纳米粒子的反应。在水培系统中,将不同浓度(0、50、100、150、200 和 250 mg/L)的 8-20 nm 大小的球形银纳米粒子施用于大麦植株。播种 7 天后,对植物不同部位的生长表现、叶绿素含量、氧化损伤和抗氧化酶的活性水平进行了量化。结果表明,当浓度达到 150 毫克/升时,大麦植株的生长性能和叶绿素含量都有明显提高。有趣的是,在所有 AgNPs 处理中,脯氨酸、脂质过氧化和酶;超氧化物歧化酶 (SOD)、过氧化氢酶 (CAT)、过氧化氢酶 (APX) 和过氧化氢酶 (GR) 的活性水平都显著提高。总的来说,AgNPs 的应用大大改善了大麦的生长和相关形态生理属性。我们的研究结果为 AgNPs 对大麦生长的影响及其在提高其他作物物种性能方面的潜在应用提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanomaterials
Journal of Nanomaterials 工程技术-材料科学:综合
CiteScore
6.10
自引率
0.00%
发文量
577
审稿时长
2.3 months
期刊介绍: The overall aim of the Journal of Nanomaterials is to bring science and applications together on nanoscale and nanostructured materials with emphasis on synthesis, processing, characterization, and applications of materials containing true nanosize dimensions or nanostructures that enable novel/enhanced properties or functions. It is directed at both academic researchers and practicing engineers. Journal of Nanomaterials will highlight the continued growth and new challenges in nanomaterials science, engineering, and nanotechnology, both for application development and for basic research.
期刊最新文献
Influence of the DEA Concentration on Structural and Optical Properties of Nanodot PbS Thin Films Growth by Chemical Solution Deposition: Unveiling Dual Optical Absorption Edges Breaking Barriers in Eco-Friendly Synthesis of Plant-Mediated Metal/Metal Oxide/Bimetallic Nanoparticles: Antibacterial, Anticancer, Mechanism Elucidation, and Versatile Utilizations Catalytic Degradation Efficacy of Silver Nanoparticles Fabricated Using Actinidia deliciosa Peel Extract Differential Silica Nanoparticles Functionalized with Branched Poly(1-Vinyl-1,2,4-Triazole): Antibacterial, Antifungal, and Cytotoxic Qualities Review of the Design and Operation Criteria of a DC Submerged Arc Discharge Carbon Nanostructure Synthesis Installation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1