{"title":"An Automatic Framework for Nasal Esthetic Assessment by ResNet Convolutional Neural Network","authors":"","doi":"10.1007/s10278-024-00973-7","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Nasal base aesthetics is an interesting and challenging issue that attracts the attention of researchers in recent years. With that insight, in this study, we propose a novel automatic framework (AF) for evaluating the nasal base which can be useful to improve the symmetry in rhinoplasty and reconstruction. The introduced AF includes a hybrid model for nasal base landmarks recognition and a combined model for predicting nasal base symmetry. The proposed state-of-the-art nasal base landmark detection model is trained on the nasal base images for comprehensive qualitative and quantitative assessments. Then, the deep convolutional neural networks (CNN) and multi-layer perceptron neural network (MLP) models are integrated by concatenating their last hidden layer to evaluate the nasal base symmetry based on geometry features and tiled images of the nasal base. This study explores the concept of data augmentation by applying the methods motivated via commonly used image augmentation techniques. According to the experimental findings, the results of the AF are closely related to the otolaryngologists’ ratings and are useful for preoperative planning, intraoperative decision-making, and postoperative assessment. Furthermore, the visualization indicates that the proposed AF is capable of predicting the nasal base symmetry and capturing asymmetry areas to facilitate semantic predictions. The codes are accessible at https://github.com/AshooriMaryam/Nasal-Aesthetic-Assessment-Deep-learning.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"28 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-024-00973-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Nasal base aesthetics is an interesting and challenging issue that attracts the attention of researchers in recent years. With that insight, in this study, we propose a novel automatic framework (AF) for evaluating the nasal base which can be useful to improve the symmetry in rhinoplasty and reconstruction. The introduced AF includes a hybrid model for nasal base landmarks recognition and a combined model for predicting nasal base symmetry. The proposed state-of-the-art nasal base landmark detection model is trained on the nasal base images for comprehensive qualitative and quantitative assessments. Then, the deep convolutional neural networks (CNN) and multi-layer perceptron neural network (MLP) models are integrated by concatenating their last hidden layer to evaluate the nasal base symmetry based on geometry features and tiled images of the nasal base. This study explores the concept of data augmentation by applying the methods motivated via commonly used image augmentation techniques. According to the experimental findings, the results of the AF are closely related to the otolaryngologists’ ratings and are useful for preoperative planning, intraoperative decision-making, and postoperative assessment. Furthermore, the visualization indicates that the proposed AF is capable of predicting the nasal base symmetry and capturing asymmetry areas to facilitate semantic predictions. The codes are accessible at https://github.com/AshooriMaryam/Nasal-Aesthetic-Assessment-Deep-learning.
期刊介绍:
The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals.
Suggested Topics
PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.