Peter Burggräf, Johannes Wagner, Till Saßmannshausen, Tim Weißer, Ognjen Radisic-Aberger
{"title":"AI-artifacts in engineering change management – a systematic literature review","authors":"Peter Burggräf, Johannes Wagner, Till Saßmannshausen, Tim Weißer, Ognjen Radisic-Aberger","doi":"10.1007/s00163-023-00430-6","DOIUrl":null,"url":null,"abstract":"<p>Changes and modifications to existing products, known as engineering changes (EC), are common in complex product development. They require appropriate implementation planning and supervision to mitigate the economic downsides due to complexity. These tasks, however, take a high administrative toll on the organization. In response, automation by computer tools has been suggested. Due to the underlying process complexity, the application of artificial intelligence (AI) is advised. To support research and development of new AI-artifacts for EC management (ECM), a knowledge base is required. Thus, this paper aims to gather insights from existing approaches and discover literature gaps by conducting a systematic literature review. 39 publications applying AI methods and algorithms in ECM were identified and subsequently discussed. The analysis shows that the methods vary and are mostly utilized for predicting change propagation and knowledge retrieval. The review’s results suggest that AI in EC requires developing distributed AI systems to manage the ensuing complexity. Additionally, five concrete suggestions are presented as future research needs: Research on metaheuristics for optimizing EC schedules, testing of stacked machine learning methods for process outcome prediction, establishment of process supervision, development of the mentioned distributed AI systems for automation, and validation with industry partners.</p>","PeriodicalId":49629,"journal":{"name":"Research in Engineering Design","volume":"86 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Engineering Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00163-023-00430-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Changes and modifications to existing products, known as engineering changes (EC), are common in complex product development. They require appropriate implementation planning and supervision to mitigate the economic downsides due to complexity. These tasks, however, take a high administrative toll on the organization. In response, automation by computer tools has been suggested. Due to the underlying process complexity, the application of artificial intelligence (AI) is advised. To support research and development of new AI-artifacts for EC management (ECM), a knowledge base is required. Thus, this paper aims to gather insights from existing approaches and discover literature gaps by conducting a systematic literature review. 39 publications applying AI methods and algorithms in ECM were identified and subsequently discussed. The analysis shows that the methods vary and are mostly utilized for predicting change propagation and knowledge retrieval. The review’s results suggest that AI in EC requires developing distributed AI systems to manage the ensuing complexity. Additionally, five concrete suggestions are presented as future research needs: Research on metaheuristics for optimizing EC schedules, testing of stacked machine learning methods for process outcome prediction, establishment of process supervision, development of the mentioned distributed AI systems for automation, and validation with industry partners.
期刊介绍:
Research in Engineering Design is an international journal that publishes research papers on design theory and methodology in all fields of engineering, focussing on mechanical, civil, architectural, and manufacturing engineering. The journal is designed for professionals in academia, industry and government interested in research issues relevant to design practice. Papers emphasize underlying principles of engineering design and discipline-oriented research where results are of interest or extendible to other engineering domains. General areas of interest include theories of design, foundations of design environments, representations and languages, models of design processes, and integration of design and manufacturing. Representative topics include functional representation, feature-based design, shape grammars, process design, redesign, product data base models, and empirical studies. The journal also publishes state-of-the-art review articles.