Assessing the Internal Variability of Large-Eddy Simulations for Microscale Pollutant Dispersion Prediction in an Idealized Urban Environment

IF 2.3 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Boundary-Layer Meteorology Pub Date : 2024-01-27 DOI:10.1007/s10546-023-00853-7
{"title":"Assessing the Internal Variability of Large-Eddy Simulations for Microscale Pollutant Dispersion Prediction in an Idealized Urban Environment","authors":"","doi":"10.1007/s10546-023-00853-7","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>This study aims at estimating the inherent variability of microscale boundary-layer flows and its impact on air pollutant dispersion in urban environments. For this purpose, we present a methodology combining high-fidelity large-eddy simulation (LES) and a stationary bootstrap algorithm, to estimate the internal variability of time-averaged quantities over a given analysis period thanks to sub-average samples. A detailed validation of an LES microscale air pollutant dispersion model in the framework of the Mock Urban Setting Test (MUST) field-scale experiment is performed. We show that the LES results are in overall good agreement with the experimental measurements of wind velocity and tracer concentration, especially in terms of fluctuations and peaks of concentrations. We also show that both LES estimates and the MUST experimental measurements are subject to significant internal variability, which is therefore essential to take into account in the model validation. Moreover, we demonstrate that the LES model can accurately reproduce the observed internal variability.</p>","PeriodicalId":9153,"journal":{"name":"Boundary-Layer Meteorology","volume":"174 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary-Layer Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10546-023-00853-7","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims at estimating the inherent variability of microscale boundary-layer flows and its impact on air pollutant dispersion in urban environments. For this purpose, we present a methodology combining high-fidelity large-eddy simulation (LES) and a stationary bootstrap algorithm, to estimate the internal variability of time-averaged quantities over a given analysis period thanks to sub-average samples. A detailed validation of an LES microscale air pollutant dispersion model in the framework of the Mock Urban Setting Test (MUST) field-scale experiment is performed. We show that the LES results are in overall good agreement with the experimental measurements of wind velocity and tracer concentration, especially in terms of fluctuations and peaks of concentrations. We also show that both LES estimates and the MUST experimental measurements are subject to significant internal variability, which is therefore essential to take into account in the model validation. Moreover, we demonstrate that the LES model can accurately reproduce the observed internal variability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估理想化城市环境中用于微尺度污染物扩散预测的大型埃迪模拟的内部可变性
摘要 本研究旨在估算微尺度边界层流动的内在可变性及其对城市环境空气污染物扩散的影响。为此,我们提出了一种结合高保真大涡度模拟(LES)和静态自举算法的方法,利用次平均样本估算给定分析期内时间平均量的内部变异性。在模拟城市环境测试(MUST)实地试验框架内,对 LES 微尺度空气污染物扩散模型进行了详细验证。结果表明,LES 结果与风速和示踪剂浓度的实验测量结果总体上吻合,特别是在浓度的波动和峰值方面。我们还表明,LES 估计值和 MUST 实验测量值都存在显著的内部变异,因此在模型验证时必须考虑到这一点。此外,我们还证明了 LES 模型能够准确再现观测到的内部变异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Boundary-Layer Meteorology
Boundary-Layer Meteorology 地学-气象与大气科学
CiteScore
7.50
自引率
14.00%
发文量
72
审稿时长
12 months
期刊介绍: Boundary-Layer Meteorology offers several publishing options: Research Letters, Research Articles, and Notes and Comments. The Research Letters section is designed to allow quick dissemination of new scientific findings, with an initial review period of no longer than one month. The Research Articles section offers traditional scientific papers that present results and interpretations based on substantial research studies or critical reviews of ongoing research. The Notes and Comments section comprises occasional notes and comments on specific topics with no requirement for rapid publication. Research Letters are limited in size to five journal pages, including no more than three figures, and cannot contain supplementary online material; Research Articles are generally fifteen to twenty pages in length with no more than fifteen figures; Notes and Comments are limited to ten journal pages and five figures. Authors submitting Research Letters should include within their cover letter an explanation of the need for rapid publication. More information regarding all publication formats can be found in the recent Editorial ‘Introducing Research Letters to Boundary-Layer Meteorology’.
期刊最新文献
Geostrophic Drag Law in Conventionally Neutral Atmospheric Boundary Layer: Simplified Parametrization and Numerical Validation Variation in Zero Plane Displacement and Roughness Length for Momentum Revisited Rainfall Effects on Atmospheric Turbulence and Near-Surface Similarities in the Stable Boundary Layer Rethinking the Roughness Height: An Improved Description of Temperature Profiles over Short Vegetation On the Extent of Applicability of Various Non-linear Similarity Functions for Computation of Surface Fluxes under Stable Conditions in Numerical Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1