Synthesis, Characterization, Molecular Docking Studies and Biological Evaluation of Some Novel 3,5-disubstituted-1-phenyl-4,5-dihydro-1H-pyrazole Derivatives

IF 1.7 3区 化学 Q3 CHEMISTRY, ORGANIC Current Organic Chemistry Pub Date : 2024-01-29 DOI:10.2174/0113852728287379231229102847
Fatih Tok, İlayda Rumeysa Bayrak, Elif Karakaraman, İrem Soysal, Cansel Çakır, Kübra Tuna, Serap Yılmaz Özgüven, Yusuf Sıcak, Mehmet Öztürk, Bedia Koçyiğit-Kaymakçıoğlu
{"title":"Synthesis, Characterization, Molecular Docking Studies and Biological Evaluation of Some Novel 3,5-disubstituted-1-phenyl-4,5-dihydro-1H-pyrazole Derivatives","authors":"Fatih Tok, İlayda Rumeysa Bayrak, Elif Karakaraman, İrem Soysal, Cansel Çakır, Kübra Tuna, Serap Yılmaz Özgüven, Yusuf Sıcak, Mehmet Öztürk, Bedia Koçyiğit-Kaymakçıoğlu","doi":"10.2174/0113852728287379231229102847","DOIUrl":null,"url":null,"abstract":": In this study, some new pyrazoline derivatives bearing cyano or nitro groups were synthesized. The structures of the compounds were characterized by IR, 1H-NMR, 13C-NMR and elemental analysis data. The ABTS·+, DPPH·, CUPRAC and β-Carotene/linoleic acid assays were carried out to determine the antioxidant activity of the synthesized pyrazolines. Compound P14 showed higher antioxidant activity than the standard substance BHA with IC50 values of 1.71±0.31 μM and 0.29±0.04 μM in ABTS+ and β-carotene/linoleic acid assays, respectively. Compound P12 also exhibited higher antioxidant activities than BHA with an IC50 value of 0.36±0.14 μM in β-carotene/linoleic acid analysis. In activity studies of pyrazolines against cholinesterase (AChE and BChE), tyrosinase, α-amylase and α- glucosidase, compound P1 (IC50 = 39.51±3.80 μM) showed higher activity against α-amylase and compounds P5 and P12 displayed higher activity against α-glucosidase than acarbose with IC50 values of 14.09±0.62 and 83.26±2.57 μM, respectively. The drug-like properties such as Lipinski and Veber, bioavailability and toxicity risks of the synthesized compounds were also evaluated. The compounds were predicted to be compatible with Lipinski and Veber rules, have high bioavailability and low toxicity profiles. Moreover, molecular docking studies were performed to better understand the high activity of the compounds against a-amylase and a-glucosidase enzymes.","PeriodicalId":10926,"journal":{"name":"Current Organic Chemistry","volume":"146 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0113852728287379231229102847","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

: In this study, some new pyrazoline derivatives bearing cyano or nitro groups were synthesized. The structures of the compounds were characterized by IR, 1H-NMR, 13C-NMR and elemental analysis data. The ABTS·+, DPPH·, CUPRAC and β-Carotene/linoleic acid assays were carried out to determine the antioxidant activity of the synthesized pyrazolines. Compound P14 showed higher antioxidant activity than the standard substance BHA with IC50 values of 1.71±0.31 μM and 0.29±0.04 μM in ABTS+ and β-carotene/linoleic acid assays, respectively. Compound P12 also exhibited higher antioxidant activities than BHA with an IC50 value of 0.36±0.14 μM in β-carotene/linoleic acid analysis. In activity studies of pyrazolines against cholinesterase (AChE and BChE), tyrosinase, α-amylase and α- glucosidase, compound P1 (IC50 = 39.51±3.80 μM) showed higher activity against α-amylase and compounds P5 and P12 displayed higher activity against α-glucosidase than acarbose with IC50 values of 14.09±0.62 and 83.26±2.57 μM, respectively. The drug-like properties such as Lipinski and Veber, bioavailability and toxicity risks of the synthesized compounds were also evaluated. The compounds were predicted to be compatible with Lipinski and Veber rules, have high bioavailability and low toxicity profiles. Moreover, molecular docking studies were performed to better understand the high activity of the compounds against a-amylase and a-glucosidase enzymes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一些新型 3,5-二取代-1-苯基-4,5-二氢-1H-吡唑衍生物的合成、表征、分子对接研究和生物学评价
:本研究合成了一些带有氰基或硝基的新吡唑啉衍生物。通过红外光谱、1H-核磁共振、13C-核磁共振和元素分析数据对这些化合物的结构进行了表征。通过 ABTS-+、DPPH-、CUPRAC 和 β-胡萝卜素/亚油酸测定法来确定合成吡唑啉类化合物的抗氧化活性。化合物 P14 的抗氧化活性高于标准物质 BHA,在 ABTS+ 和 β-胡萝卜素/亚油酸试验中的 IC50 值分别为 1.71±0.31 μM 和 0.29±0.04 μM。化合物 P12 的抗氧化活性也高于 BHA,其在β-胡萝卜素/亚油酸分析中的 IC50 值为 0.36±0.14 μM。在吡唑类化合物对胆碱酯酶(AChE 和 BChE)、酪氨酸酶、α-淀粉酶和α-葡萄糖苷酶的活性研究中,化合物 P1(IC50 = 39.51±3.80 μM)对α-淀粉酶的活性高于阿卡波糖,化合物 P5 和 P12 对α-葡萄糖苷酶的活性高于阿卡波糖,IC50 值分别为 14.09±0.62 和 83.26±2.57 μM。此外,还对合成化合物的类药物特性(如 Lipinski 和 Veber)、生物利用度和毒性风险进行了评估。根据预测,这些化合物符合 Lipinski 和 Veber 规则,具有高生物利用度和低毒性特征。此外,还进行了分子对接研究,以更好地了解化合物对 a- 淀粉酶和 a-葡萄糖苷酶的高活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Organic Chemistry
Current Organic Chemistry 化学-有机化学
CiteScore
3.70
自引率
7.70%
发文量
76
审稿时长
1 months
期刊介绍: Current Organic Chemistry aims to provide in-depth/mini reviews on the current progress in various fields related to organic chemistry including bioorganic chemistry, organo-metallic chemistry, asymmetric synthesis, heterocyclic chemistry, natural product chemistry, catalytic and green chemistry, suitable aspects of medicinal chemistry and polymer chemistry, as well as analytical methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by chosen experts who are internationally known for their eminent research contributions. The Journal also accepts high quality research papers focusing on hot topics, highlights and letters besides thematic issues in these fields. Current Organic Chemistry should prove to be of great interest to organic chemists in academia and industry, who wish to keep abreast with recent developments in key fields of organic chemistry.
期刊最新文献
A Novel Family of Selenazolo[3,2-a]pyridinium Derivatives Based on Annulation Reactions and Comparative Analysis of Antimicrobial Activity of the Selenium and Sulfur Analogs of Chalcogenazolo[3,2-a]pyridiniums Exploring the Potential of Novel 4-Thiazolidinone Derivatives as Dual Anti-inflammatory and Antioxidant Agents: Synthesis, Pharmacological Activity and Docking Analysis 3,4-Dihydropyrimidine-2(1H)-one/thione Derivatives as Anti-inflammatory and Antioxidant Agents: Synthesis, Biological Activity, and Docking Studies Di-tert-butyl Peroxide (DTBP)-Promoted Heterocyclic Ring Construction A New Route for the Synthesis of Trichloromethyl-1H-Benzo[d]imidazole and (1,2,3- Triazol)-1H-Benzo[d]imidazole Derivatives via Copper-Catalyzed N-Arylation and Huisgen Reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1