{"title":"Weed communities after decades of mineral fertilization and tillage treatments in a corn-soybean rotation","authors":"Marie-Josée Simard, Noura Ziadi","doi":"10.1017/wet.2024.1","DOIUrl":null,"url":null,"abstract":"Soil fertility and disturbance can potentially modify weed dynamics in a corn-soybean rotation. Knowing how added mineral fertilizers and tillage influence weed populations in the long term can provide insight into weed community shifts, which may affect future weed management requirements. The first objective of this study was to evaluate the effect of 24-25 years of nitrogen and phosphorus fertilization treatments, and tillage (moldboard vs. no tillage) on weeds (density, biomass and composition) before and after herbicide applications in 2016/corn and 2017/soybean. The second objective was to evaluate the effect of the same treatments six years after no post-emergence weed management in 2022/corn. Since the last evaluation performed in 2004, weed density, richness, and diversity increased, and more annual grasses were observed under both tillage regimes. No fertilization effect was observed on any weed variables, including composition, except for increased biomass when left to grow all season after crop planting. In managed plots, the density and biomass of annuals and perennials was generally higher in no-till, and discrepancies were highest for annual grass densities before herbicide application. Weed species richness and diversity based on counts were equivalent between tillage regimes, but total biomass was distributed between more species in no-till. Higher weed densities and concurrent weed biomass, observed in no-till, reduced crop yields in 2016/soybean only. The combination of low crop diversity and low use of residual herbicides during the trial potentially led to the observed species shifts and increased weed density.","PeriodicalId":23710,"journal":{"name":"Weed Technology","volume":"3 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weed Technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/wet.2024.1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Soil fertility and disturbance can potentially modify weed dynamics in a corn-soybean rotation. Knowing how added mineral fertilizers and tillage influence weed populations in the long term can provide insight into weed community shifts, which may affect future weed management requirements. The first objective of this study was to evaluate the effect of 24-25 years of nitrogen and phosphorus fertilization treatments, and tillage (moldboard vs. no tillage) on weeds (density, biomass and composition) before and after herbicide applications in 2016/corn and 2017/soybean. The second objective was to evaluate the effect of the same treatments six years after no post-emergence weed management in 2022/corn. Since the last evaluation performed in 2004, weed density, richness, and diversity increased, and more annual grasses were observed under both tillage regimes. No fertilization effect was observed on any weed variables, including composition, except for increased biomass when left to grow all season after crop planting. In managed plots, the density and biomass of annuals and perennials was generally higher in no-till, and discrepancies were highest for annual grass densities before herbicide application. Weed species richness and diversity based on counts were equivalent between tillage regimes, but total biomass was distributed between more species in no-till. Higher weed densities and concurrent weed biomass, observed in no-till, reduced crop yields in 2016/soybean only. The combination of low crop diversity and low use of residual herbicides during the trial potentially led to the observed species shifts and increased weed density.
期刊介绍:
Weed Technology publishes original research and scholarship in the form of peer-reviewed articles focused on understanding how weeds are managed.
The journal focuses on:
- Applied aspects concerning the management of weeds in agricultural systems
- Herbicides used to manage undesired vegetation, weed biology and control
- Weed/crop management systems
- Reports of new weed problems
-New technologies for weed management and special articles emphasizing technology transfer to improve weed control
-Articles dealing with plant growth regulators and management of undesired plant growth may also be accepted, provided there is clear relevance to weed science technology, e.g., turfgrass or woody plant management along rights-of-way, vegetation management in forest, aquatic, or other non-crop situations.
-Surveys, education, and extension topics related to weeds will also be considered