Multi-Mode Rayleigh Wave Dispersion Spectrum Inversion Using Wasserstein Distance Coupled with Bayesian Optimization

GEOPHYSICS Pub Date : 2024-01-26 DOI:10.1190/geo2023-0223.1
Yanlong Niu, Gang Fang, Yunyue Elita Li, S. C. Chian, E. Nilot
{"title":"Multi-Mode Rayleigh Wave Dispersion Spectrum Inversion Using Wasserstein Distance Coupled with Bayesian Optimization","authors":"Yanlong Niu, Gang Fang, Yunyue Elita Li, S. C. Chian, E. Nilot","doi":"10.1190/geo2023-0223.1","DOIUrl":null,"url":null,"abstract":"We propose a new automatic framework for non-destructive multi-channel analysis of surface waves (MASW) that combines multi-mode dispersion spectrum matching and the finite element method (FEM)-based inversion to enhance the accuracy of subsurface profiling in site investigation activities. This framework eliminates the need for manual identification of the Rayleigh wave energy component and multi-mode assignment, reducing the dependence on operator experience and judgment. The dispersion spectrum is generated through a FEM model that simulates 2D seismic wave propagation, taking into account the actual acquisition layout and lateral variations in the subsurface. We introduce the Wasserstein distance (WD) for evaluating the difference between observed and simulated spectra, and incorporate Bayesian optimization for efficiently inverting shear wave velocity profiles. The effectiveness of the proposed framework is demonstrated through synthetic data examples, and the superiority of the WD-based objective function is illustrated by comparing it with the conventional mean square error (MSE)-based objective function. Subsequently, we conduct a field test on a reclaimed landfill to validate the proposed framework. This test confirms the ability of framework to retrieve multi-mode Rayleigh waves and demonstrates its effectiveness in providing high-resolution shear wave profiles of the shallow subsurface.","PeriodicalId":509604,"journal":{"name":"GEOPHYSICS","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GEOPHYSICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/geo2023-0223.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a new automatic framework for non-destructive multi-channel analysis of surface waves (MASW) that combines multi-mode dispersion spectrum matching and the finite element method (FEM)-based inversion to enhance the accuracy of subsurface profiling in site investigation activities. This framework eliminates the need for manual identification of the Rayleigh wave energy component and multi-mode assignment, reducing the dependence on operator experience and judgment. The dispersion spectrum is generated through a FEM model that simulates 2D seismic wave propagation, taking into account the actual acquisition layout and lateral variations in the subsurface. We introduce the Wasserstein distance (WD) for evaluating the difference between observed and simulated spectra, and incorporate Bayesian optimization for efficiently inverting shear wave velocity profiles. The effectiveness of the proposed framework is demonstrated through synthetic data examples, and the superiority of the WD-based objective function is illustrated by comparing it with the conventional mean square error (MSE)-based objective function. Subsequently, we conduct a field test on a reclaimed landfill to validate the proposed framework. This test confirms the ability of framework to retrieve multi-mode Rayleigh waves and demonstrates its effectiveness in providing high-resolution shear wave profiles of the shallow subsurface.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用瓦瑟斯坦距离与贝叶斯优化法进行多模式瑞利波频散谱反演
我们提出了一种新的无损多通道面波分析(MASW)自动框架,该框架结合了多模式频散谱匹配和基于有限元法(FEM)的反演,以提高现场调查活动中地下剖面测量的准确性。该框架无需人工识别瑞利波能量分量和多模式分配,减少了对操作人员经验和判断的依赖。频散谱通过有限元模型生成,该模型模拟二维地震波的传播,并考虑到实际采集布局和地下的横向变化。我们引入了瓦瑟斯坦距离(WD)来评估观测频谱和模拟频谱之间的差异,并结合贝叶斯优化技术来有效反演剪切波速度剖面。通过合成数据实例证明了所提框架的有效性,并通过与传统的基于均方误差(MSE)的目标函数进行比较,说明了基于 WD 的目标函数的优越性。随后,我们在一个填埋场进行了实地测试,以验证所提出的框架。该测试证实了该框架检索多模式瑞利波的能力,并证明了其在提供浅表次表层高分辨率剪切波剖面方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust unsupervised 5D seismic data reconstruction on both regular and irregular grid Effect of fluid patch clustering on the P-wave velocity-saturation relation: a critical saturation model Strategic Geosteering Workflow with Uncertainty Quantification and Deep Learning: Initial Test on the Goliat Field Data Review on 3D electromagnetic modeling and inversion for Mineral Exploration High dynamic range land wavefield reconstruction from randomized acquisition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1