Applying SEM, Exploratory SEM, and Bayesian SEM to Personality Assessments

Psych Pub Date : 2024-01-25 DOI:10.3390/psych6010007
Hyeri Hong, Alfonso J. Martinez
{"title":"Applying SEM, Exploratory SEM, and Bayesian SEM to Personality Assessments","authors":"Hyeri Hong, Alfonso J. Martinez","doi":"10.3390/psych6010007","DOIUrl":null,"url":null,"abstract":"Despite the importance of demonstrating and evaluating how structural equation modeling (SEM), exploratory structural equation modeling (ESEM), and Bayesian structural equation modeling (BSEM) work simultaneously, research comparing these analytic techniques is limited with few studies conducted to systematically compare them to each other using correlated-factor, hierarchical, and bifactor models of personality. In this study, we evaluate the performance of SEM, ESEM, and BSEM across correlated-factor, hierarchical, and bifactor structures and multiple estimation techniques (maximum likelihood, robust weighted least squares, and Bayesian estimation) to test the internal structure of personality. Results across correlated-factor, hierarchical, and bifactor models highlighted the importance of controlling for scale coarseness and allowing small off-target loadings when using maximum likelihood (ML) and robust weighted least squares estimation (WLSMV) and including informative priors (IP) when using Bayesian estimation. In general, Bayesian-IP and WLSMV ESEM models provided noticeably best model fits. This study is expected to serve as a guide for professionals and applied researchers, identify the most appropriate ways to represent the structure of personality, and provide templates for future research into personality and other multidimensional representations of psychological constructs. We provide Mplus code for conducting the demonstrated analyses in the online supplement.","PeriodicalId":93139,"journal":{"name":"Psych","volume":"16 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psych","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/psych6010007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the importance of demonstrating and evaluating how structural equation modeling (SEM), exploratory structural equation modeling (ESEM), and Bayesian structural equation modeling (BSEM) work simultaneously, research comparing these analytic techniques is limited with few studies conducted to systematically compare them to each other using correlated-factor, hierarchical, and bifactor models of personality. In this study, we evaluate the performance of SEM, ESEM, and BSEM across correlated-factor, hierarchical, and bifactor structures and multiple estimation techniques (maximum likelihood, robust weighted least squares, and Bayesian estimation) to test the internal structure of personality. Results across correlated-factor, hierarchical, and bifactor models highlighted the importance of controlling for scale coarseness and allowing small off-target loadings when using maximum likelihood (ML) and robust weighted least squares estimation (WLSMV) and including informative priors (IP) when using Bayesian estimation. In general, Bayesian-IP and WLSMV ESEM models provided noticeably best model fits. This study is expected to serve as a guide for professionals and applied researchers, identify the most appropriate ways to represent the structure of personality, and provide templates for future research into personality and other multidimensional representations of psychological constructs. We provide Mplus code for conducting the demonstrated analyses in the online supplement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将 SEM、探索性 SEM 和贝叶斯 SEM 应用于人格评估
尽管展示和评估结构方程建模(SEM)、探索性结构方程建模(ESEM)和贝叶斯结构方程建模(BSEM)如何同时发挥作用非常重要,但对这些分析技术进行比较的研究却很有限,很少有研究使用人格的相关因素模型、层次模型和双因素模型对它们进行系统的比较。在本研究中,我们评估了 SEM、ESEM 和 BSEM 在相关因素结构、层次结构和双因素结构以及多种估计技术(最大似然法、稳健加权最小二乘法和贝叶斯估计法)中的表现,以检验人格的内部结构。相关因素模型、层次模型和双因素模型的结果凸显了在使用最大似然法(ML)和稳健加权最小二乘法估计(WLSMV)时控制量表粗糙度和允许较小的非目标载荷以及在使用贝叶斯估计时包含信息先验(IP)的重要性。一般来说,贝叶斯-IP 和 WLSMV ESEM 模型的模型拟合效果明显最好。本研究有望为专业人士和应用研究人员提供指导,确定表示人格结构的最合适方法,并为未来人格和其他多维心理建构的研究提供模板。我们在在线增刊中提供了进行演示分析的 Mplus 代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Robust Indicator Mean-Based Method for Estimating Generalizability Theory Absolute Error and Related Dependability Indices within Structural Equation Modeling Frameworks Qualitative Pilot Interventions for the Enhancement of Mental Health Support in Doctoral Students Walking Forward Together—The Next Step: Indigenous Youth Mental Health and the Climate Crisis Walking Forward Together—The Next Step: Indigenous Youth Mental Health and the Climate Crisis The IADC Grief Questionnaire as a Brief Measure for Complicated Grief in Clinical Practice and Research: A Preliminary Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1