Fractional-Order Model for Evolution of Bovine Tuberculosis with Vaccination and Contaminated Environment

IF 17.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-01-24 DOI:10.1155/2024/6934895
Boubacar Diallo, J. Okelo, Shaibu Osman, Simon Karanja, N. S. Aguegboh
{"title":"Fractional-Order Model for Evolution of Bovine Tuberculosis with Vaccination and Contaminated Environment","authors":"Boubacar Diallo, J. Okelo, Shaibu Osman, Simon Karanja, N. S. Aguegboh","doi":"10.1155/2024/6934895","DOIUrl":null,"url":null,"abstract":"Bovine tuberculosis (bTB) is a zoonotic disease that is commonly transmitted via inhaling aerosols, drinking unpasteurized milk, and eating raw meat. We use a fractional-order model with the Caputo sense to examine the evolution of bovine tuberculosis transmission in human and animal populations, including a vaccine compartment for humans. We derived and obtained the threshold quantity R0 to ascertain the illness state. We established conditions guaranteeing the asymptotic stability of the equilibria (locally and globally). Sensitivity analysis was conducted to identify the factors that govern the dynamics of tuberculosis. The study demonstrates that the rate of human-to-animal transmission of tuberculosis and environmental pollution and the rate of bTB transmission between animals all affect tuberculosis transmission. However, as vaccination rates increase and fewer individuals consume contaminated environment products (such as meat, milk, and other dairy products), the disease becomes less common in humans. To manage bovine TB, it is advised that information programmes be implemented, the environment be monitored, infected persons be treated, contaminated animals be vaccinated, and contaminated animals be quarantined. The usefulness of the discovered theoretical results is demonstrated through numerical experiments.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"60 5","pages":""},"PeriodicalIF":17.7000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/6934895","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bovine tuberculosis (bTB) is a zoonotic disease that is commonly transmitted via inhaling aerosols, drinking unpasteurized milk, and eating raw meat. We use a fractional-order model with the Caputo sense to examine the evolution of bovine tuberculosis transmission in human and animal populations, including a vaccine compartment for humans. We derived and obtained the threshold quantity R0 to ascertain the illness state. We established conditions guaranteeing the asymptotic stability of the equilibria (locally and globally). Sensitivity analysis was conducted to identify the factors that govern the dynamics of tuberculosis. The study demonstrates that the rate of human-to-animal transmission of tuberculosis and environmental pollution and the rate of bTB transmission between animals all affect tuberculosis transmission. However, as vaccination rates increase and fewer individuals consume contaminated environment products (such as meat, milk, and other dairy products), the disease becomes less common in humans. To manage bovine TB, it is advised that information programmes be implemented, the environment be monitored, infected persons be treated, contaminated animals be vaccinated, and contaminated animals be quarantined. The usefulness of the discovered theoretical results is demonstrated through numerical experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
牛结核病随疫苗接种和污染环境演变的分数阶模型
牛结核病(bTB)是一种人畜共患病,通常通过吸入气溶胶、饮用未经消毒的牛奶和食用生肉传播。我们使用具有卡普托意义的分数阶模型来研究牛结核病在人类和动物种群中的传播演化,包括人类的疫苗区。我们推导并获得了确定疾病状态的阈值量 R0。我们建立了保证均衡渐近稳定性的条件(局部和全局)。我们进行了敏感性分析,以确定影响结核病动态的因素。研究表明,结核病的人兽传播率和环境污染以及结核病在动物间的传播率都会影响结核病的传播。然而,随着疫苗接种率的提高和食用受污染环境产品(如肉类、牛奶和其他乳制品)的人数减少,该疾病在人类中的发病率也会降低。为了控制牛结核病,建议实施信息计划、监测环境、治疗感染者、为受污染的动物接种疫苗并隔离受污染的动物。通过数值实验证明了所发现的理论结果的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Programmable Aptamer-Controlled Fibrinogenesis Using Dynamic DNA Networks and Synthetic Transcription Machineries Chalcogenoviologen-Based Surface and Interface Chemistry for Optoelectronic Applications: From Molecular Design to Functional Devices. Issue Publication Information Issue Editorial Masthead Regulating Lanthanide Single-Molecule Magnets with Coordination Geometry and Organometallic Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1