{"title":"A Virtual Fabrication and High-Performance Design of 65 nm Nanocrystal Floating-Gate Transistor","authors":"Thinh Dang Cong, Trang Hoang","doi":"10.1155/2024/5162989","DOIUrl":null,"url":null,"abstract":"Floating-gate transistor lies at the heart of many aspects of semiconductor applications such as neural networks, analog mixed-signal, neuromorphic computing, and especially in nonvolatile memories. The purpose of this paper was to design a high-performance nanocrystal floating-gate transistor in terms of a large memory window, low power, and extraordinary erasing speeds. Besides, the transistor achieves a thin thickness of the tunnel gate oxide layer. In order to obtain the high-performance design, this work proposed a set of structure parameters for the device such as the tunnel oxide layer thickness, Interpoly Dielectric (IPD), dot dimension, and dot spacing. Besides, this work was successful in the virtual fabrication process and methodology to fabricate and characterize the 65 nm nanocrystal floating-gate transistor. Regarding the results, while the fabrication process solves the limitation of the tunnel oxide layer thickness with the small value of 6 nm, the performance of the transistor has been significantly improved, such as 2.8 V of the memory window with the supply voltage of ±6 V at the control gate. In addition, the operation speeds are compatible, especially the rapid erasing speeds of 2.03 μs, 28.6 ns, and 1.6 ns when the low control gate voltages are ±9 V, ±12 V, and ±15 V, respectively.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/5162989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Floating-gate transistor lies at the heart of many aspects of semiconductor applications such as neural networks, analog mixed-signal, neuromorphic computing, and especially in nonvolatile memories. The purpose of this paper was to design a high-performance nanocrystal floating-gate transistor in terms of a large memory window, low power, and extraordinary erasing speeds. Besides, the transistor achieves a thin thickness of the tunnel gate oxide layer. In order to obtain the high-performance design, this work proposed a set of structure parameters for the device such as the tunnel oxide layer thickness, Interpoly Dielectric (IPD), dot dimension, and dot spacing. Besides, this work was successful in the virtual fabrication process and methodology to fabricate and characterize the 65 nm nanocrystal floating-gate transistor. Regarding the results, while the fabrication process solves the limitation of the tunnel oxide layer thickness with the small value of 6 nm, the performance of the transistor has been significantly improved, such as 2.8 V of the memory window with the supply voltage of ±6 V at the control gate. In addition, the operation speeds are compatible, especially the rapid erasing speeds of 2.03 μs, 28.6 ns, and 1.6 ns when the low control gate voltages are ±9 V, ±12 V, and ±15 V, respectively.
期刊介绍:
Modelling and Simulation in Engineering aims at providing a forum for the discussion of formalisms, methodologies and simulation tools that are intended to support the new, broader interpretation of Engineering. Competitive pressures of Global Economy have had a profound effect on the manufacturing in Europe, Japan and the USA with much of the production being outsourced. In this context the traditional interpretation of engineering profession linked to the actual manufacturing needs to be broadened to include the integration of outsourced components and the consideration of logistic, economical and human factors in the design of engineering products and services.