One-step Solving the Hand-Eye Calibration by Dual Kronecker Product

Xiao Wang, Hanwen Song
{"title":"One-step Solving the Hand-Eye Calibration by Dual Kronecker Product","authors":"Xiao Wang, Hanwen Song","doi":"10.1115/1.4064576","DOIUrl":null,"url":null,"abstract":"\n Hand-eye calibration is a typical research direction in robotics applications. The current methods can be divided into two categories according to whether the rotational and translational equations are decoupled for computation: two-step methods and one-step methods. Both one-step and two-step methods generally convert such problems to linear null space computations, which is implemented by the corresponding computational operators. Owing to the booming development of the rotation operators, the two-step methods have been more fully researched. However, due to the limitations of the research on computational operators integrating rotation and translation, the one-step methods still have much scope for research. Dual algebra, as effective mathematical entities for screws and wrenches, provides the theoretical basis for the development of the one-step methods for hand-eye calibration. In this paper, a computational operator for the dual matrices computation was first proposed, i.e., dual Kronecker product. Subsequently, a hand-eye calibration framework was proposed based on the dual Kronecker product, which allowed the screw motion to be represented as multiple dual vectors. Furthermore, the equivalence of this framework with the orthogonal-dual-tensor-based approach was derived, providing a more intuitive computational representation. The feasibility and superiority of the proposed computational framework were experimentally verified.","PeriodicalId":508172,"journal":{"name":"Journal of Mechanisms and Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hand-eye calibration is a typical research direction in robotics applications. The current methods can be divided into two categories according to whether the rotational and translational equations are decoupled for computation: two-step methods and one-step methods. Both one-step and two-step methods generally convert such problems to linear null space computations, which is implemented by the corresponding computational operators. Owing to the booming development of the rotation operators, the two-step methods have been more fully researched. However, due to the limitations of the research on computational operators integrating rotation and translation, the one-step methods still have much scope for research. Dual algebra, as effective mathematical entities for screws and wrenches, provides the theoretical basis for the development of the one-step methods for hand-eye calibration. In this paper, a computational operator for the dual matrices computation was first proposed, i.e., dual Kronecker product. Subsequently, a hand-eye calibration framework was proposed based on the dual Kronecker product, which allowed the screw motion to be represented as multiple dual vectors. Furthermore, the equivalence of this framework with the orthogonal-dual-tensor-based approach was derived, providing a more intuitive computational representation. The feasibility and superiority of the proposed computational framework were experimentally verified.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过双克朗内克乘积一步解决手眼校准问题
手眼校准是机器人应用领域的一个典型研究方向。根据旋转方程和平移方程是否解耦计算,目前的方法可分为两类:两步法和一步法。一步法和两步法一般都将此类问题转换为线性空域计算,并通过相应的计算算子来实现。由于旋转算子的蓬勃发展,两步法得到了更充分的研究。然而,由于旋转和平移一体化计算算子研究的局限性,一步法仍有很大的研究空间。二元代数作为螺丝和扳手的有效数学实体,为手眼校准一步法的发展提供了理论基础。本文首先提出了一种用于二元矩阵计算的计算算子,即二元克朗克积。随后,本文提出了一个基于对偶克朗克积的手眼校准框架,该框架可将螺旋运动表示为多个对偶矢量。此外,还推导出了该框架与基于正交-双张量方法的等价性,提供了更直观的计算表示。实验验证了所提出的计算框架的可行性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development and Analysis of a Novel Bio-syncretic Parallel Hip Exoskeleton Based on Torque Requirements A Novel Head-following Algorithm for Multi-Joint Articulated Driven Continuum Robots Development of a 6 degrees- of-freedom hybrid interface intended for teleoperated robotic cervical spine surgery Improving Terrain Adaptability and Compliance in Closed-Chain Leg: Design, Control, and Testing Errata: Static Stability of Planar Contacting Systems: Analytical Treatment in Euclidean Space. ASME J. Mech. Rob., 16(8): p. 081009; DOI:10.1115/1.4064065
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1