Towards a Mechanistic Understanding of the Slagging Propensities of Petroleum Coke: Lessons Learned from Its Co-Combustion with Natural Gas in Oxygen-Enriched Atmospheres

Methane Pub Date : 2024-01-24 DOI:10.3390/methane3010005
Nghia Duc Tin Nguyen, G. Krishnamoorthy
{"title":"Towards a Mechanistic Understanding of the Slagging Propensities of Petroleum Coke: Lessons Learned from Its Co-Combustion with Natural Gas in Oxygen-Enriched Atmospheres","authors":"Nghia Duc Tin Nguyen, G. Krishnamoorthy","doi":"10.3390/methane3010005","DOIUrl":null,"url":null,"abstract":"A Computational Fluid Dynamic study was carried out to match the measured outer ash deposition rates associated with the combustion of petroleum coke (PC)–natural gas in AIR and O2/CO2 (70/30 vol%, OXY70). The fly ash PSD associated with high-fixed-carbon, non-porous fuel was estimated using a shrinking sphere burnout model and employed in conjunction with particle kinetic energy (PKE), particle viscosity (µP), and a critical Weber-number-based capture criterion. Deposition rate predictions were sensitive to the fly ash composition employed for estimating µP due to the significant enrichment of Fe in the deposits. Predictions were insensitive to the specific µP model formulation employed or whether the V2O5 in the ash was assumed to play the role of a glass former or a glass modifier. OXY70 scenario impaction rates were significantly lower than the measured deposition rates when the fly ash PSD associated with the AIR scenario was employed in the calculations. This necessitated an ad hoc modification of the OXY70 fly ash PSD to a coarser range to match the measurements and attributing it to agglomeration resulting from longer residence times and higher temperatures. This shift in PSD was in line with AIR and OXY70 fly ash PSD measurements reported previously.","PeriodicalId":74177,"journal":{"name":"Methane","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methane","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/methane3010005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A Computational Fluid Dynamic study was carried out to match the measured outer ash deposition rates associated with the combustion of petroleum coke (PC)–natural gas in AIR and O2/CO2 (70/30 vol%, OXY70). The fly ash PSD associated with high-fixed-carbon, non-porous fuel was estimated using a shrinking sphere burnout model and employed in conjunction with particle kinetic energy (PKE), particle viscosity (µP), and a critical Weber-number-based capture criterion. Deposition rate predictions were sensitive to the fly ash composition employed for estimating µP due to the significant enrichment of Fe in the deposits. Predictions were insensitive to the specific µP model formulation employed or whether the V2O5 in the ash was assumed to play the role of a glass former or a glass modifier. OXY70 scenario impaction rates were significantly lower than the measured deposition rates when the fly ash PSD associated with the AIR scenario was employed in the calculations. This necessitated an ad hoc modification of the OXY70 fly ash PSD to a coarser range to match the measurements and attributing it to agglomeration resulting from longer residence times and higher temperatures. This shift in PSD was in line with AIR and OXY70 fly ash PSD measurements reported previously.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从机理上理解石油焦的成渣倾向性:从石油焦与天然气在富氧环境中共燃中汲取的经验教训
为了与石油焦(PC)-天然气在空气和氧气/二氧化碳(70/30 vol%,OXY70)中燃烧时测得的外灰沉积率相匹配,我们进行了一项计算流体动力学研究。与高固定碳、无孔燃料相关的飞灰 PSD 是使用收缩球燃烧模型估算的,并与粒子动能 (PKE)、粒子粘度 (µP) 和基于临界韦伯数的捕获标准结合使用。由于沉积物中铁的显著富集,沉积速率预测对用于估算 µP 的粉煤灰成分很敏感。预测结果对所采用的特定 µP 模型公式或假定灰烬中的 V2O5 起玻璃成形剂或玻璃改性剂的作用不敏感。如果在计算中采用与 AIR 情景相关的粉煤灰 PSD,则 OXY70 情景下的撞击率明显低于测得的沉积率。这就需要临时修改 OXY70 粉煤灰 PSD,使其在更粗的范围内,以符合测量结果,并将其归因于较长的停留时间和较高的温度导致的团聚。PSD 的这种变化与之前报告的 AIR 和 OXY70 粉煤灰 PSD 测量结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Digestate from a Methane Fermentation Process for Supplying Water and Nutrients in Sweet Potato Cultivation in Sandy Soil Pathways toward Climate-Neutral Red Meat Production Recent Advances in the Use of Controlled Nanocatalysts in Methane Conversion Reactions Dry Reforming of CH4 Using a Microreactor A Study on the Heterogeneity and Anisotropy of the Porous Grout Body Created in the Stabilization of a Methane Hydrate Reservoir through Grouting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1