The Catalytic Mechanism of [Bmim]Cl-Transition Metal Catalysts for Hydrochlorination of Acetylene

IF 3.8 3区 化学 Q2 CHEMISTRY, PHYSICAL Catalysts Pub Date : 2024-01-23 DOI:10.3390/catal14020093
Hui Shao, Ying-zhou Lu, Xin Liang, Chunxi Li
{"title":"The Catalytic Mechanism of [Bmim]Cl-Transition Metal Catalysts for Hydrochlorination of Acetylene","authors":"Hui Shao, Ying-zhou Lu, Xin Liang, Chunxi Li","doi":"10.3390/catal14020093","DOIUrl":null,"url":null,"abstract":"Ionic liquids (ILs) are green solvents involved in chemical reaction and separation processes. In this paper, four ILs-based metal catalysts were prepared by dissolving four transition metal chlorides into 1-butyl-3-methylimidazolium chloride ([Bmim]Cl). Their catalytic performance was measured, and the catalytic mechanism was studied via density functional theory (DFT) based on the analysis of the Mayer bonding order, Mulliken charge, molecular electrostatic potential (ESP), electron localization function (ELF), and partial density of states (PDOS). The results show that the catalytic activity follows the order [Bmim]Cl-RuCl3 > [Bmim]Cl-AgCl > [Bmim]Cl-CuCl2 > [Bmim]Cl-CuCl. [Bmim]Cl helps to dissolve and activate HCl, and the metal chlorides can greatly reduce the activation energy of the reaction. This study provides new insights into the catalytic mechanism of IL, transition metals, and their synergistic effect from a microscopic point of view and sheds light on the development of new catalysts for acetylene hydrochlorination.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/catal14020093","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ionic liquids (ILs) are green solvents involved in chemical reaction and separation processes. In this paper, four ILs-based metal catalysts were prepared by dissolving four transition metal chlorides into 1-butyl-3-methylimidazolium chloride ([Bmim]Cl). Their catalytic performance was measured, and the catalytic mechanism was studied via density functional theory (DFT) based on the analysis of the Mayer bonding order, Mulliken charge, molecular electrostatic potential (ESP), electron localization function (ELF), and partial density of states (PDOS). The results show that the catalytic activity follows the order [Bmim]Cl-RuCl3 > [Bmim]Cl-AgCl > [Bmim]Cl-CuCl2 > [Bmim]Cl-CuCl. [Bmim]Cl helps to dissolve and activate HCl, and the metal chlorides can greatly reduce the activation energy of the reaction. This study provides new insights into the catalytic mechanism of IL, transition metals, and their synergistic effect from a microscopic point of view and sheds light on the development of new catalysts for acetylene hydrochlorination.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乙炔加氢氯化的[Bmim]Cl-过渡金属催化剂的催化机理
离子液体(ILs)是参与化学反应和分离过程的绿色溶剂。本文将四种过渡金属氯化物溶解到 1-丁基-3-甲基咪唑氯化物([Bmim]Cl)中,制备了四种基于离子液体的金属催化剂。通过密度泛函理论(DFT)对它们的催化性能进行了测定,并在分析 Mayer 键序、Mulliken 电荷、分子静电位(ESP)、电子定位功能(ELF)和部分态密度(PDOS)的基础上对催化机理进行了研究。结果表明,催化活性遵循[Bmim]Cl-RuCl3 > [Bmim]Cl-AgCl > [Bmim]Cl-CuCl2 > [Bmim]Cl-CuCl 的顺序。[Bmim]Cl有助于溶解和活化 HCl,金属氯化物能大大降低反应的活化能。本研究从微观角度对 IL、过渡金属及其协同效应的催化机理提出了新的见解,为乙炔加氢氯化新催化剂的开发提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Catalysts
Catalysts CHEMISTRY, PHYSICAL-
CiteScore
6.80
自引率
7.70%
发文量
1330
审稿时长
3 months
期刊介绍: Catalysts (ISSN 2073-4344) is an international open access journal of catalysts and catalyzed reactions. Catalysts publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Analyzing HDPE Thermal and Catalytic Degradation in Hydrogen Atmosphere: A Model-Free Approach to the Activation Energy Polymeric Carbon Nitride-CNTs-Ferric Oxide All-Solid Z-Scheme Heterojunction with Improved Photocatalytic Activity towards Organic Dye Removal Advancing Green Hydrogen Purity with Iron-Based Self-Cleaning Oxygen Carriers in Chemical Looping Hydrogen TiO2-Based Catalysts with Various Structures for Photocatalytic Application: A Review Pt3Mn/SiO2 + ZSM-5 Bifunctional Catalyst for Ethane Dehydroaromatization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1