Qiao Jin, Meng Yang, Guozhu Song, Nan Zhao, S. Chen, Haitao Hong, Ting Cui, Dongke Rong, Qianying Wang, Yiyan Fan, Chen Ge, Can Wang, Jiachang Bi, Yanwei Cao, Liusuo Wu, Shanmin Wang, K J Jin, Zhi-Gang Cheng, Er-Jia Guo
{"title":"Strong anisotropic order parameters at all-nitride ferromagnet/superconductor interfaces","authors":"Qiao Jin, Meng Yang, Guozhu Song, Nan Zhao, S. Chen, Haitao Hong, Ting Cui, Dongke Rong, Qianying Wang, Yiyan Fan, Chen Ge, Can Wang, Jiachang Bi, Yanwei Cao, Liusuo Wu, Shanmin Wang, K J Jin, Zhi-Gang Cheng, Er-Jia Guo","doi":"10.1088/0256-307x/41/2/027402","DOIUrl":null,"url":null,"abstract":"\n Proximity effects between superconductors and ferromagnets (SC/FM) hold paramount importance in comprehending the spin competition transpiring at their interfaces. This competition arises from the interplay between Cooper pairs and ferromagnetic exchange interactions. The proximity effects between transition metal nitrides (TMNs) are scarcely investigated due to the formidable challenges of fabricating high-quality SC/FM interfaces. In this work, we fabricated heterostructures comprising SC titanium nitride (TiN) and FM iron nitride (Fe3N) with precise chemical compositions and atomically well-defined interfaces. The magnetoresistance of Fe3N/TiN heterostructures shows a distinct magnetic anisotropy and strongly depends on the external perturbations. Moreover, the superconducting transition temperature (T\n C) and critical field of TiN experience notable suppression when proximity to Fe3N. We observe the intriguing competition of interfacial spin orientations near T\n C (~1.25 K). These findings not only add a new materials system for investigating the interplay between superconductor and ferromagnets, but also potentially provide a building block for future research endeavors and applications in the realms of superconducting spintronic devices.","PeriodicalId":505209,"journal":{"name":"Chinese Physics Letters","volume":"130 25","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0256-307x/41/2/027402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Proximity effects between superconductors and ferromagnets (SC/FM) hold paramount importance in comprehending the spin competition transpiring at their interfaces. This competition arises from the interplay between Cooper pairs and ferromagnetic exchange interactions. The proximity effects between transition metal nitrides (TMNs) are scarcely investigated due to the formidable challenges of fabricating high-quality SC/FM interfaces. In this work, we fabricated heterostructures comprising SC titanium nitride (TiN) and FM iron nitride (Fe3N) with precise chemical compositions and atomically well-defined interfaces. The magnetoresistance of Fe3N/TiN heterostructures shows a distinct magnetic anisotropy and strongly depends on the external perturbations. Moreover, the superconducting transition temperature (T
C) and critical field of TiN experience notable suppression when proximity to Fe3N. We observe the intriguing competition of interfacial spin orientations near T
C (~1.25 K). These findings not only add a new materials system for investigating the interplay between superconductor and ferromagnets, but also potentially provide a building block for future research endeavors and applications in the realms of superconducting spintronic devices.