DNN-HHOA: Deep Neural Network Optimization-Based Tabular Data Extraction from Compound Document Images

IF 0.8 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING International Journal of Image and Graphics Pub Date : 2024-01-23 DOI:10.1142/s021946782550010x
Devendra Tiwari, Anand Gupta, Rituraj Soni
{"title":"DNN-HHOA: Deep Neural Network Optimization-Based Tabular Data Extraction from Compound Document Images","authors":"Devendra Tiwari, Anand Gupta, Rituraj Soni","doi":"10.1142/s021946782550010x","DOIUrl":null,"url":null,"abstract":"Text information extraction from a tabular structure within a compound document image (CDI) is crucial to help better understand the document. The main objective of text extraction is to extract only helpful information since tabular data represents the relation between text lying in a tuple. Text from an image may be of low contrast, different style, size, alignment, orientation, and complex background. This work presents a three-step tabular text extraction process, including pre-processing, separation, and extraction. The pre-processing step uses the guide image filter to remove various kinds of noise from the image. Improved binomial thresholding (IBT) separates the text from the image. Then the tabular text is recognized and extracted from CDI using deep neural network (DNN). In this work, weights of DNN layers are optimized by the Harris Hawk optimization algorithm (HHOA). Obtained text and associated information can be used in many ways, including replicating the document in digital format, information retrieval, and text summarization. The proposed process is applied comprehensively to UNLV, TableBank, and ICDAR 2013 image datasets. The complete procedure is implemented in Python, and precision metrics performance is verified.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021946782550010x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Text information extraction from a tabular structure within a compound document image (CDI) is crucial to help better understand the document. The main objective of text extraction is to extract only helpful information since tabular data represents the relation between text lying in a tuple. Text from an image may be of low contrast, different style, size, alignment, orientation, and complex background. This work presents a three-step tabular text extraction process, including pre-processing, separation, and extraction. The pre-processing step uses the guide image filter to remove various kinds of noise from the image. Improved binomial thresholding (IBT) separates the text from the image. Then the tabular text is recognized and extracted from CDI using deep neural network (DNN). In this work, weights of DNN layers are optimized by the Harris Hawk optimization algorithm (HHOA). Obtained text and associated information can be used in many ways, including replicating the document in digital format, information retrieval, and text summarization. The proposed process is applied comprehensively to UNLV, TableBank, and ICDAR 2013 image datasets. The complete procedure is implemented in Python, and precision metrics performance is verified.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DNN-HHOA:从复合文档图像中提取基于深度神经网络优化的表格数据
从复合文档图像(CDI)中的表格结构中提取文本信息对于更好地理解文档至关重要。文本提取的主要目的是只提取有用的信息,因为表格数据代表了元组中文本之间的关系。图像中的文本可能对比度低、风格、大小、对齐方式、方向和背景复杂。本作品提出了一种三步式表格文本提取流程,包括预处理、分离和提取。预处理步骤使用引导图像滤波器去除图像中的各种噪声。改进的二叉阈值法(IBT)将文本从图像中分离出来。然后使用深度神经网络(DNN)从 CDI 中识别和提取表格文本。在这项工作中,DNN 层的权重通过 Harris Hawk 优化算法(HHOA)进行优化。获取的文本和相关信息可用于多种用途,包括以数字格式复制文档、信息检索和文本摘要。建议的流程已全面应用于 UNLV、TableBank 和 ICDAR 2013 图像数据集。整个过程用 Python 实现,并验证了精确度指标的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Image and Graphics
International Journal of Image and Graphics COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
18.80%
发文量
67
期刊最新文献
Modified Whale Algorithm and Morley PSO-ML-Based Hyperparameter Optimization for Intrusion Detection A Novel Hybrid Attention-Based Dilated Network for Depression Classification Model from Multimodal Data Using Improved Heuristic Approach An Extensive Review on Lung Cancer Detection Models CMVT: ConVit Transformer Network Recombined with Convolutional Layer Two-Phase Speckle Noise Removal in US Images: Speckle Reducing Improved Anisotropic Diffusion and Optimal Bayes Threshold
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1