Towards Polydisperse Flows with MFIX-Exa

Aaron Lattanzi, William Fullmer, Andrew Myers, Jordan Musser
{"title":"Towards Polydisperse Flows with MFIX-Exa","authors":"Aaron Lattanzi, William Fullmer, Andrew Myers, Jordan Musser","doi":"10.1115/1.4064533","DOIUrl":null,"url":null,"abstract":"\n In the presence of large size disparities, single-grid neighbor search algorithms lead to inflated neighbor lists that significantly degrade the performance of Lagrangian particle solvers. If Eulerian--Lagrangian (EL) frameworks are to remain performant when simulating realistic systems, improved neighbor detection approaches must be adopted. To this end, we consider the application of a multi-grid neighbor search (MGNS) algorithm in the MFIX-Exa software package, an exascale EL solver built upon the AMReX library. Details regarding the implementation and verification of MGNS are provided along with speedup curves for a bidisperse mixing layer. MGNS is shown to yield up to 15 × speedup on CPU and 6 × speedup on GPU for the problems considered here. The MFIX-Exa software is then validated for a variety of polydisperse flows. Finally, a brief discussion is given for how dynamic MGNS may be completed, with application to spatially varying particle size distributions.","PeriodicalId":504378,"journal":{"name":"Journal of Fluids Engineering","volume":"118 29","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the presence of large size disparities, single-grid neighbor search algorithms lead to inflated neighbor lists that significantly degrade the performance of Lagrangian particle solvers. If Eulerian--Lagrangian (EL) frameworks are to remain performant when simulating realistic systems, improved neighbor detection approaches must be adopted. To this end, we consider the application of a multi-grid neighbor search (MGNS) algorithm in the MFIX-Exa software package, an exascale EL solver built upon the AMReX library. Details regarding the implementation and verification of MGNS are provided along with speedup curves for a bidisperse mixing layer. MGNS is shown to yield up to 15 × speedup on CPU and 6 × speedup on GPU for the problems considered here. The MFIX-Exa software is then validated for a variety of polydisperse flows. Finally, a brief discussion is given for how dynamic MGNS may be completed, with application to spatially varying particle size distributions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 MFIX-Exa 实现多分散流动
在存在较大尺寸差异的情况下,单网格邻域搜索算法会导致邻域列表膨胀,从而显著降低拉格朗日粒子求解器的性能。如果欧拉-拉格朗日(EL)框架要在模拟现实系统时保持高性能,就必须采用改进的邻域检测方法。为此,我们考虑在 MFIX-Exa 软件包中应用多网格邻域搜索(MGNS)算法,这是一种基于 AMReX 库的超大规模 EL 求解器。本文提供了有关 MGNS 实施和验证的详细信息,以及双分散混合层的加速曲线。对于本文所考虑的问题,MGNS 在 CPU 上的速度提高了 15 倍,在 GPU 上的速度提高了 6 倍。随后,MFIX-Exa 软件针对各种多分散流动进行了验证。最后,简要讨论了如何完成动态 MGNS,并将其应用于空间变化的粒度分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Tire Attributes on the Aerodynamic Performance of a Generic Car-Tire Assembly1 Hydrodynamic Design and Pulsation Evolution in an Axial-Flow Pump Based On Control Mechanism of Flow-Induced Excitation Numerical Investigation of the Impact of the Rectangular Nozzle Aspect Ratio On Liquid Jet in Crossflow Numerical Study On the Effect of Channel Configuration On Mixture Formation of an Axial Flow Wave Rotor Combustor Study of Temperature Drop Region in Transitional Region in Fluid-film Thrust Bearings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1