Analysis of Grid-tied Solar Photovoltaic Energy Generation under Uncertain Atmospheric Conditions Using Adaptive Neuro-fuzzy Control System

Ja'afar Sulaiman Zangina, Muhammad Aliyu Suleiman, Abdulla Ahmed
{"title":"Analysis of Grid-tied Solar Photovoltaic Energy Generation under Uncertain Atmospheric Conditions Using Adaptive Neuro-fuzzy Control System","authors":"Ja'afar Sulaiman Zangina, Muhammad Aliyu Suleiman, Abdulla Ahmed","doi":"10.47852/bonviewaaes42022110","DOIUrl":null,"url":null,"abstract":"The grid-tied photovoltaic (PV) power system has remained the most practical and sustainable configuration among renewable energy generation systems. Although uncertainties persist in solar irradiance and temperature, the grid-tied system faces transient instability issues during maximum power point tracking, adversely affecting power quality and resulting in substantial costs. To overcome this issue, we proposed analyzing the grid-tied system under uncertain atmospheric conditions based on an adaptive neuro-fuzzy control system (ANCS). This control scheme incorporates a hybrid learning algorithm and undergoes evaluation across various operating conditions. The obtained results demonstrate the effectiveness of the learning algorithm in maintaining a fast convergence speed. Consequently, this capability ensures the consistent preservation of sufficient power quality in the power system without any discernible transient impact. Furthermore, the investigation reveals the significant impact of solar radiation and temperature on the performance of the solar grid-tied PV system. Specifically, temperature alone contributes to over 15% power reduction when reaching 45 °C. As the temperature decreases to 5 °C at 1000 W/m2 irradiance, the ANCS influences an increase in the system's power generation from 100.72 kW at 25 °C to 103.01 kW.","PeriodicalId":504752,"journal":{"name":"Archives of Advanced Engineering Science","volume":"28 31","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Advanced Engineering Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47852/bonviewaaes42022110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The grid-tied photovoltaic (PV) power system has remained the most practical and sustainable configuration among renewable energy generation systems. Although uncertainties persist in solar irradiance and temperature, the grid-tied system faces transient instability issues during maximum power point tracking, adversely affecting power quality and resulting in substantial costs. To overcome this issue, we proposed analyzing the grid-tied system under uncertain atmospheric conditions based on an adaptive neuro-fuzzy control system (ANCS). This control scheme incorporates a hybrid learning algorithm and undergoes evaluation across various operating conditions. The obtained results demonstrate the effectiveness of the learning algorithm in maintaining a fast convergence speed. Consequently, this capability ensures the consistent preservation of sufficient power quality in the power system without any discernible transient impact. Furthermore, the investigation reveals the significant impact of solar radiation and temperature on the performance of the solar grid-tied PV system. Specifically, temperature alone contributes to over 15% power reduction when reaching 45 °C. As the temperature decreases to 5 °C at 1000 W/m2 irradiance, the ANCS influences an increase in the system's power generation from 100.72 kW at 25 °C to 103.01 kW.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用自适应神经模糊控制系统分析不确定大气条件下的并网太阳能光伏发电问题
并网光伏(PV)发电系统一直是可再生能源发电系统中最实用、最具可持续性的配置。虽然太阳辐照度和温度的不确定性依然存在,但并网系统在最大功率点跟踪过程中面临着瞬态不稳定性问题,对电能质量造成不利影响,并导致大量成本。为解决这一问题,我们提出了基于自适应神经模糊控制系统(ANCS)的不确定大气条件下并网系统分析方案。该控制方案采用了混合学习算法,并在各种运行条件下进行了评估。获得的结果表明,学习算法在保持快速收敛速度方面非常有效。因此,这种能力可确保电力系统始终保持充足的电能质量,而不会产生任何明显的瞬态影响。此外,调查还揭示了太阳辐射和温度对太阳能并网光伏系统性能的重要影响。具体来说,当温度达到 45 °C时,仅温度一项就会导致功率下降 15%以上。当温度降低到 5 °C、辐照度为 1000 W/m2 时,ANCS 影响系统发电量从 25 °C时的 100.72 kW 增加到 103.01 kW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preparation of Manganese Doped Bismuth Oxide for the photocatalytic Degradation of Methylene Blue Risk Analysis of Jet A-1 Tank Filling and Storage Processes at the Shorebase Diffusion of Municipal Waste Pollutants in Electrokinetic Lead Remediated Compacted Lateritic Soil Promoting Sustainable Green Infrastructure: Experimental and Numerical Investigation of Concrete Reinforced with Recycled Steel Fibers Calcium Carbide and Wood Ash as Environmentally Friendly Soil Stabilisers for Enhanced Subgrade Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1