NeoHunter: Flexible software for systematically detecting neoantigens from sequencing data

Tianxing Ma, Zetong Zhao, Haochen Li, Lei Wei, Xuegong Zhang
{"title":"NeoHunter: Flexible software for systematically detecting neoantigens from sequencing data","authors":"Tianxing Ma, Zetong Zhao, Haochen Li, Lei Wei, Xuegong Zhang","doi":"10.1002/qub2.28","DOIUrl":null,"url":null,"abstract":"Complicated molecular alterations in tumors generate various mutant peptides. Some of these mutant peptides can be presented to the cell surface and then elicit immune responses, and such mutant peptides are called neoantigens. Accurate detection of neoantigens could help to design personalized cancer vaccines. Although some computational frameworks for neoantigen detection have been proposed, most of them can only detect SNV‐ and indel‐derived neoantigens. In addition, current frameworks adopt oversimplified neoantigen prioritization strategies. These factors hinder the comprehensive and effective detection of neoantigens. We developed NeoHunter, flexible software to systematically detect and prioritize neoantigens from sequencing data in different formats. NeoHunter can detect not only SNV‐ and indel‐derived neoantigens but also gene fusion‐ and aberrant splicing‐derived neoantigens. NeoHunter supports both direct and indirect immunogenicity evaluation strategies to prioritize candidate neoantigens. These strategies utilize binding characteristics, existing biological big data, and T‐cell receptor specificity to ensure accurate detection and prioritization. We applied NeoHunter to the TESLA dataset, cohorts of melanoma and non‐small cell lung cancer patients. NeoHunter achieved high performance across the TESLA cancer patients and detected 79% (27 out of 34) of validated neoantigens in total. SNV‐ and indel‐derived neoantigens accounted for 90% of the top 100 candidate neoantigens while neoantigens from aberrant splicing accounted for 9%. Gene fusion‐derived neoantigens were detected in one patient. NeoHunter is a powerful tool to ‘catch all’ neoantigens and is available for free academic use on Github (XuegongLab/NeoHunter).","PeriodicalId":508846,"journal":{"name":"Quantitative Biology","volume":"8 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/qub2.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Complicated molecular alterations in tumors generate various mutant peptides. Some of these mutant peptides can be presented to the cell surface and then elicit immune responses, and such mutant peptides are called neoantigens. Accurate detection of neoantigens could help to design personalized cancer vaccines. Although some computational frameworks for neoantigen detection have been proposed, most of them can only detect SNV‐ and indel‐derived neoantigens. In addition, current frameworks adopt oversimplified neoantigen prioritization strategies. These factors hinder the comprehensive and effective detection of neoantigens. We developed NeoHunter, flexible software to systematically detect and prioritize neoantigens from sequencing data in different formats. NeoHunter can detect not only SNV‐ and indel‐derived neoantigens but also gene fusion‐ and aberrant splicing‐derived neoantigens. NeoHunter supports both direct and indirect immunogenicity evaluation strategies to prioritize candidate neoantigens. These strategies utilize binding characteristics, existing biological big data, and T‐cell receptor specificity to ensure accurate detection and prioritization. We applied NeoHunter to the TESLA dataset, cohorts of melanoma and non‐small cell lung cancer patients. NeoHunter achieved high performance across the TESLA cancer patients and detected 79% (27 out of 34) of validated neoantigens in total. SNV‐ and indel‐derived neoantigens accounted for 90% of the top 100 candidate neoantigens while neoantigens from aberrant splicing accounted for 9%. Gene fusion‐derived neoantigens were detected in one patient. NeoHunter is a powerful tool to ‘catch all’ neoantigens and is available for free academic use on Github (XuegongLab/NeoHunter).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NeoHunter:从测序数据中系统检测新抗原的灵活软件
肿瘤中复杂的分子变化会产生各种突变肽。其中一些突变肽可以呈现在细胞表面,然后引起免疫反应,这种突变肽被称为新抗原。准确检测新抗原有助于设计个性化的癌症疫苗。虽然已经提出了一些新抗原检测计算框架,但它们大多只能检测SNV和indel衍生的新抗原。此外,目前的框架采用了过于简化的新抗原优先排序策略。这些因素阻碍了新抗原的全面有效检测。我们开发的 NeoHunter 是一款灵活的软件,可从不同格式的测序数据中系统地检测新抗原并进行优先排序。NeoHunter 不仅能检测 SNV 和 indel 衍生的新抗原,还能检测基因融合和剪接异常衍生的新抗原。NeoHunter 支持直接和间接免疫原性评估策略,以确定候选新抗原的优先次序。这些策略利用结合特征、现有生物大数据和T细胞受体特异性来确保准确检测和优先排序。我们将 NeoHunter 应用于 TESLA 数据集、黑色素瘤和非小细胞肺癌患者队列。NeoHunter 在 TESLA 癌症患者中取得了很高的性能,总共检测出了 79% 的验证新抗原(34 个中的 27 个)。在前100个候选新抗原中,SNV和indel衍生的新抗原占90%,而剪接异常衍生的新抗原占9%。在一名患者中检测到了基因融合衍生的新抗原。NeoHunter是 "捕捉 "所有新抗原的强大工具,可在Github(XuegongLab/NeoHunter)上免费供学术界使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deterministic modelling of asymptomatic spread and disease stage progression in vaccine preventable infectious diseases Perspectives on benchmarking foundation models for network biology In silico designing and optimization of anti‐epidermal growth factor receptor scaffolds by complementary‐determining regions‐grafting technique Mathematical modeling of evolution of cell networks in epithelial tissues A  substructure‐aware graph neural network incorporating relation features for drug–drug interaction prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1