Flexible organic integrated circuits free of parasitic capacitance fabricated through a simple dual self‐alignment method

SmartMat Pub Date : 2024-01-22 DOI:10.1002/smm2.1273
Baichuan Jiang, Xiao Han, Yu Che, Wenbin Li, Hong-wei Zheng, Jun Li, Cailing Ou, Nannan Dou, Zixiao Han, Tingyu Ji, Chuanhui Liu, Zhiyuan Zhao, Yunlong Guo, Yunqi Liu, Lei Zhang
{"title":"Flexible organic integrated circuits free of parasitic capacitance fabricated through a simple dual self‐alignment method","authors":"Baichuan Jiang, Xiao Han, Yu Che, Wenbin Li, Hong-wei Zheng, Jun Li, Cailing Ou, Nannan Dou, Zixiao Han, Tingyu Ji, Chuanhui Liu, Zhiyuan Zhao, Yunlong Guo, Yunqi Liu, Lei Zhang","doi":"10.1002/smm2.1273","DOIUrl":null,"url":null,"abstract":"In integrated circuits (ICs), the parasitic capacitance is one of the crucial factors that degrade the circuit dynamic performance; for instance, it reduces the operating frequency of the circuit. Eliminating the parasitic capacitance in organic transistors is notoriously challenging due to the inherent tradeoff between manufacturing costs and interlayer alignment accuracy. Here, we overcome such a limitation using a cost‐effective method for fabricating organic thin‐film transistors and rectifying diodes without redundant electrode overlaps. This is achieved by placing all electrodes horizontally and introducing sub‐100 nm gaps for separation. A representative small‐scale IC consisting of five‐stage ring oscillators based on the obtained nonparasitic transistors and diodes is fabricated on flexible substrates, which performs reliably at a low driving voltage of 1 V. Notably, the oscillator exhibits signal propagation delays of 5.8 μs per stage at a supply voltage of 20 V when utilizing pentacene as the active layer. Since parasitic capacitance has been a common challenge for all types of thin‐film transistors, our approach may pave the way toward the realization of flexible and large‐area ICs based on other emerging and highly performing semiconductors.","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"51 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SmartMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smm2.1273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In integrated circuits (ICs), the parasitic capacitance is one of the crucial factors that degrade the circuit dynamic performance; for instance, it reduces the operating frequency of the circuit. Eliminating the parasitic capacitance in organic transistors is notoriously challenging due to the inherent tradeoff between manufacturing costs and interlayer alignment accuracy. Here, we overcome such a limitation using a cost‐effective method for fabricating organic thin‐film transistors and rectifying diodes without redundant electrode overlaps. This is achieved by placing all electrodes horizontally and introducing sub‐100 nm gaps for separation. A representative small‐scale IC consisting of five‐stage ring oscillators based on the obtained nonparasitic transistors and diodes is fabricated on flexible substrates, which performs reliably at a low driving voltage of 1 V. Notably, the oscillator exhibits signal propagation delays of 5.8 μs per stage at a supply voltage of 20 V when utilizing pentacene as the active layer. Since parasitic capacitance has been a common challenge for all types of thin‐film transistors, our approach may pave the way toward the realization of flexible and large‐area ICs based on other emerging and highly performing semiconductors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过简单的双自对准法制造出无寄生电容的柔性有机集成电路
在集成电路(IC)中,寄生电容是降低电路动态性能的关键因素之一,例如,它会降低电路的工作频率。在有机晶体管中消除寄生电容是一项众所周知的挑战,因为制造成本和层间对准精度之间存在固有的权衡。在此,我们采用一种经济高效的方法来制造无多余电极重叠的有机薄膜晶体管和整流二极管,从而克服了这一限制。这是通过水平放置所有电极并引入 100 纳米以下的间隙来实现的。基于所获得的非寄生晶体管和二极管,在柔性衬底上制造出了一个具有代表性的由五级环形振荡器组成的小型集成电路,该集成电路在 1 V 的低驱动电压下也能可靠地工作。值得注意的是,当使用五碳烯作为有源层时,振荡器在 20 V 电源电压下每级的信号传播延迟为 5.8 μs。由于寄生电容一直是所有类型薄膜晶体管面临的共同挑战,我们的方法可能会为实现基于其他新兴高性能半导体的灵活大面积集成电路铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chiral gypsum with high‐performance mechanical properties induced by self‐assembly of chiral amino acid on an amorphous mineral Electrolyte‐gated organic field‐effect transistors with high operational stability and lifetime in practical electrolytes Efforts of implementing ultra‐flexible thin‐film encapsulation for optoelectronic devices based on atomic layer deposition technology Flexible retinomorphic vision sensors with scotopic and photopic adaptation for a fully flexible neuromorphic machine vision system Coral‐inspired anti‐biofilm therapeutic abutments as a new paradigm for prevention and treatment of peri‐implant infection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1