Analysis of unsteady MHD fluid flow across two parallel discs with uniform fluctuation subject to modified Hall and activation energy

IF 2.6 4区 物理与天体物理 Q2 PHYSICS, APPLIED International Journal of Modern Physics B Pub Date : 2024-01-22 DOI:10.1142/s0217979224504241
Bilal Ali, Sidra Jubair, Zafar Mahmood, Nisar Ahmad Koka, Abdul Hamid Gani
{"title":"Analysis of unsteady MHD fluid flow across two parallel discs with uniform fluctuation subject to modified Hall and activation energy","authors":"Bilal Ali, Sidra Jubair, Zafar Mahmood, Nisar Ahmad Koka, Abdul Hamid Gani","doi":"10.1142/s0217979224504241","DOIUrl":null,"url":null,"abstract":"This study intends to examine the consequences of the externally applied magnetic field and modified Hall effect on nanofluid flow across two symmetrically spinning and extending discs, where continuously the upper disc moves upward and downward. The lower disc is vertically fixed. The discs rotate and move vertically, generating a 3D flow. The mass density, heat transfer and flow motion have been evaluated and modeled in the form of the system of partial differential equations (PDEs) with an additional influence of activation energy, heat source and chemical reaction. The system of PDEs is modified to an ordinary set of differential equations by employing the resemblance substitution method. The obtained system of ODEs is further solved through the numerical approach (bvp4c). The results are compared to the bvp4c package and published work for validity purposes. In the case of downward displacement of the upper disc, magnetic and Hall characteristics have a significant impact on the velocity curve. The energy curve elevates with the upward movement of the disc, while it reduces with the downward fluctuation. Furthermore, the mass transmission rate enhances with the influence of hall current, while diminishing with the impact of chemical reaction rate.","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217979224504241","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study intends to examine the consequences of the externally applied magnetic field and modified Hall effect on nanofluid flow across two symmetrically spinning and extending discs, where continuously the upper disc moves upward and downward. The lower disc is vertically fixed. The discs rotate and move vertically, generating a 3D flow. The mass density, heat transfer and flow motion have been evaluated and modeled in the form of the system of partial differential equations (PDEs) with an additional influence of activation energy, heat source and chemical reaction. The system of PDEs is modified to an ordinary set of differential equations by employing the resemblance substitution method. The obtained system of ODEs is further solved through the numerical approach (bvp4c). The results are compared to the bvp4c package and published work for validity purposes. In the case of downward displacement of the upper disc, magnetic and Hall characteristics have a significant impact on the velocity curve. The energy curve elevates with the upward movement of the disc, while it reduces with the downward fluctuation. Furthermore, the mass transmission rate enhances with the influence of hall current, while diminishing with the impact of chemical reaction rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
受修正霍尔和活化能影响的、流经两个平行圆盘的均匀波动非稳态 MHD 流体流动分析
本研究旨在探讨外加磁场和修正霍尔效应对纳米流体流过两个对称旋转和延伸圆盘的影响。下圆盘垂直固定。圆盘旋转并垂直移动,产生三维流动。质量密度、传热和流动运动已通过偏微分方程(PDE)系统进行了评估和建模,并增加了活化能、热源和化学反应的影响。通过使用相似替代法,将偏微分方程系统修改为常微分方程组。得到的 ODEs 系统通过数值方法(bvp4c)进一步求解。结果与 bvp4c 软件包和已发表的研究成果进行了比较,以确定其有效性。在上圆盘向下位移的情况下,磁特性和霍尔特性对速度曲线有显著影响。能量曲线随着圆盘的向上运动而上升,而随着向下波动而下降。此外,质量传输率在霍尔电流的影响下提高,而在化学反应速率的影响下降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Modern Physics B
International Journal of Modern Physics B 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.80%
发文量
417
审稿时长
3.1 months
期刊介绍: Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.
期刊最新文献
Microstructure and mechanical property of Zr-4 alloys brazed with Ag–Cu–Ti filler metal Ab-initio investigation of electronic and optical properties of vanadium pentoxide (V2O5) Modeling of nanofluid thermophysical treatment through a permeable container under the impact of MHD Metal-organic decomposed lanthanum cerium oxide thin films: A study of chemical and surface properties Analyzing cutting force and vibration amplitude in high-speed milling of SKD11 steel with thermal assistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1