Fan Zhang, H. Hao, M. Cao, Z. Yao, Shuai Fu, Hanxing Liu
{"title":"Piezoelectric Properties and Thermal Stability of Pb(Yb1/2Nb1/2)O3-BiScO3-PbTiO3 Ternary Ceramics","authors":"Fan Zhang, H. Hao, M. Cao, Z. Yao, Shuai Fu, Hanxing Liu","doi":"10.3390/cryst14010091","DOIUrl":null,"url":null,"abstract":"Piezoelectric ceramics with excellent piezoelectric properties and a high Curie temperature are important for numerous electromechanical devices in a broad range of temperature environments. In this work, the relaxor ferroelectric Pb(Yb1/2Nb1/2)O3 end member was selected to be introduced into a BiScO3-PbTiO3 high-temperature piezoelectric ceramic to reduce the dielectric loss and improve the piezoelectric properties while slightly reducing the Curie temperature. The phase structure and dielectric, ferroelectric and piezoelectric properties of 0.025Pb(Yb1/2Nb1/2)O3-(0.975−x)BiScO3-xPbTiO3 (0.60 ≤ x ≤ 0.63) ceramics were systematically analyzed, and the best electrical properties were observed in the morphotropic phase boundary region x = 0.61 with d33 = 370 pC/N, kp = 44%, Pr = 33.9 μC/cm2. Importantly, no significant depolarization was observed in the x = 0.61 ceramic from room temperature to 290 °C, demonstrating its good thermal stability and potential applications in a wide range of temperature environments.","PeriodicalId":505131,"journal":{"name":"Crystals","volume":"32 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cryst14010091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Piezoelectric ceramics with excellent piezoelectric properties and a high Curie temperature are important for numerous electromechanical devices in a broad range of temperature environments. In this work, the relaxor ferroelectric Pb(Yb1/2Nb1/2)O3 end member was selected to be introduced into a BiScO3-PbTiO3 high-temperature piezoelectric ceramic to reduce the dielectric loss and improve the piezoelectric properties while slightly reducing the Curie temperature. The phase structure and dielectric, ferroelectric and piezoelectric properties of 0.025Pb(Yb1/2Nb1/2)O3-(0.975−x)BiScO3-xPbTiO3 (0.60 ≤ x ≤ 0.63) ceramics were systematically analyzed, and the best electrical properties were observed in the morphotropic phase boundary region x = 0.61 with d33 = 370 pC/N, kp = 44%, Pr = 33.9 μC/cm2. Importantly, no significant depolarization was observed in the x = 0.61 ceramic from room temperature to 290 °C, demonstrating its good thermal stability and potential applications in a wide range of temperature environments.