Practical implications in the interpolation methods for constructing the regional mean sea surface model in the eastern Mediterranean Sea

IF 1.2 Q4 REMOTE SENSING Journal of Applied Geodesy Pub Date : 2024-01-19 DOI:10.1515/jag-2023-0070
M. Murshan, Balaji Devaraju, Balasubramanian Nagarajan, Onkar Dikshit
{"title":"Practical implications in the interpolation methods for constructing the regional mean sea surface model in the eastern Mediterranean Sea","authors":"M. Murshan, Balaji Devaraju, Balasubramanian Nagarajan, Onkar Dikshit","doi":"10.1515/jag-2023-0070","DOIUrl":null,"url":null,"abstract":"\n This investigation estimates a regional Mean Sea Surface (MSS) model, named SY21MSS, over the eastern Mediterranean Sea using satellite altimetry data from nine Exact Repeat Missions (ERM) and two Geodetic Missions (GM). Two interpolation methods, Least Squares Collocation (LSC) and Ordinary Kriging (OK), were employed, and statistical metrics were applied to assess their performance within a 15 km buffer from the coast. The comparison between LSC and OK techniques in the context of regional MSS modeling primarily centers on the covariance functions used by these methods. Furthermore, generalized cross-validation results indicate that OK outperforms LSC in this region. Consequently, the study recommends adopting the Kriging-based model for calculating regional MSS models in this region due to its superior performance. The investigation further explored the disparities between estimated regional MSS models and the global model DTU18MSS, highlighting a pronounced similarity between OK-SY21MSS and DTU18MSS, as evidenced by a lesser standard deviation (SD) difference compared to LSC-SY21MSS. The practical implications of this research underscore the importance of selecting an appropriate interpolation technique based on data characteristics and study area specifics. While both LSC and OK techniques are deemed viable for MSS modeling, the study emphasizes the superior performance of OK, particularly concerning covariance functions. Additionally, the results emphasize caution when applying global models in regions with significant local variations.","PeriodicalId":45494,"journal":{"name":"Journal of Applied Geodesy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jag-2023-0070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

This investigation estimates a regional Mean Sea Surface (MSS) model, named SY21MSS, over the eastern Mediterranean Sea using satellite altimetry data from nine Exact Repeat Missions (ERM) and two Geodetic Missions (GM). Two interpolation methods, Least Squares Collocation (LSC) and Ordinary Kriging (OK), were employed, and statistical metrics were applied to assess their performance within a 15 km buffer from the coast. The comparison between LSC and OK techniques in the context of regional MSS modeling primarily centers on the covariance functions used by these methods. Furthermore, generalized cross-validation results indicate that OK outperforms LSC in this region. Consequently, the study recommends adopting the Kriging-based model for calculating regional MSS models in this region due to its superior performance. The investigation further explored the disparities between estimated regional MSS models and the global model DTU18MSS, highlighting a pronounced similarity between OK-SY21MSS and DTU18MSS, as evidenced by a lesser standard deviation (SD) difference compared to LSC-SY21MSS. The practical implications of this research underscore the importance of selecting an appropriate interpolation technique based on data characteristics and study area specifics. While both LSC and OK techniques are deemed viable for MSS modeling, the study emphasizes the superior performance of OK, particularly concerning covariance functions. Additionally, the results emphasize caution when applying global models in regions with significant local variations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地中海东部区域平均海面模型内插方法的实际意义
这项研究利用九次精确重复飞行任务(ERM)和两次大地测量飞行任务(GM)的卫星测高数据,估算了地中海东部的区域平均海面(MSS)模型,命名为 SY21MSS。采用了两种插值方法,即最小二乘法定位(LSC)和普通克里金法(OK),并应用统计指标来评估它们在距离海岸 15 公里缓冲区内的性能。LSC 和 OK 技术在区域 MSS 建模中的比较主要集中在这些方法所使用的协方差函数上。此外,广义交叉验证结果表明,OK 在该区域的表现优于 LSC。因此,研究建议采用基于克里金法的模型来计算该地区的区域 MSS 模型,因为该模型性能优越。调查进一步探讨了估计的区域 MSS 模型与全球模型 DTU18MSS 之间的差异,突出显示了 OK-SY21MSS 与 DTU18MSS 之间的明显相似性,与 LSC-SY21MSS 相比,两者的标准偏差(SD)差异较小。这项研究的实际意义强调了根据数据特征和研究区域的具体情况选择适当插值技术的重要性。虽然 LSC 和 OK 技术在 MSS 建模中都被认为是可行的,但本研究强调了 OK 的优越性能,尤其是在协方差函数方面。此外,研究结果还强调,在局部差异显著的地区应用全球模型时要谨慎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Geodesy
Journal of Applied Geodesy REMOTE SENSING-
CiteScore
2.30
自引率
7.10%
发文量
30
期刊最新文献
Occurrence characteristics of ionospheric scintillations in the civilian GPS signals (L1, L2, and L5) through a dedicated scintillation monitoring receiver at a low-latitude location in India during the 25th solar cycle A new challenge for cadastral surveying in Taiwan: feasibility analysis using combination on CORS data and online PPP service Monitoring of a rockfill embankment dam using TLS and sUAS point clouds Analyzing recent deformation in Wadi Hagul, Eastern Desert, Egypt, via advanced remote sensing and geodetic data processing Regional evaluation of global geopotential models and three types of digital elevation models with ground-based gravity and GNSS/levelling data using several techniques over Sudan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1