PREDICTING MISSING SONIC LOGS WITH SEISMIC CONSTRAINT

GEOPHYSICS Pub Date : 2024-01-18 DOI:10.1190/geo2023-0286.1
Nam Pham, Lei Fu, Weichang Li
{"title":"PREDICTING MISSING SONIC LOGS WITH SEISMIC CONSTRAINT","authors":"Nam Pham, Lei Fu, Weichang Li","doi":"10.1190/geo2023-0286.1","DOIUrl":null,"url":null,"abstract":"Compressional and shear sonic transit-time logs (DTC and DTS, respectively) provide important petrophysical and geomechanical information for subsurface characterization. However, they are often not acquired in all wells because of cost limitations or borehole problems. We propose a method to estimate DTC and DTS simultaneously, from other commonly acquired well logs like gamma-ray, density, and neutron porosity. Our method consists of two consecutive models to predict the sonic logs and predict the seismic traces at well locations. The model predicting the seismic traces adds a spatial constraint to the model predicting sonic logs. Our method also quantifies uncertainties of the prediction, which come from uncertainties of neural network parameters and input data. We train the network on four wells from the Poseidon dataset located on the Australian shelf, in the Browse basin. We test the network on other two wells from Browse basin. The test results show better predictions of sonic logs when we add the seismic constraint.","PeriodicalId":509604,"journal":{"name":"GEOPHYSICS","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GEOPHYSICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/geo2023-0286.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Compressional and shear sonic transit-time logs (DTC and DTS, respectively) provide important petrophysical and geomechanical information for subsurface characterization. However, they are often not acquired in all wells because of cost limitations or borehole problems. We propose a method to estimate DTC and DTS simultaneously, from other commonly acquired well logs like gamma-ray, density, and neutron porosity. Our method consists of two consecutive models to predict the sonic logs and predict the seismic traces at well locations. The model predicting the seismic traces adds a spatial constraint to the model predicting sonic logs. Our method also quantifies uncertainties of the prediction, which come from uncertainties of neural network parameters and input data. We train the network on four wells from the Poseidon dataset located on the Australian shelf, in the Browse basin. We test the network on other two wells from Browse basin. The test results show better predictions of sonic logs when we add the seismic constraint.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用地震约束预测丢失的声波测井记录
压缩声波测井仪和剪切声波测井仪(分别为 DTC 和 DTS)可为地下特征描述提供重要的岩石物理和地质力学信息。然而,由于成本限制或井眼问题,并非所有油井都能采集到它们。我们提出了一种根据伽马射线、密度和中子孔隙度等其他常用测井资料同时估算 DTC 和 DTS 的方法。我们的方法由两个连续的模型组成,分别用于预测声波测井记录和预测井位的地震道。预测地震道的模型为预测声波测井曲线的模型增加了空间约束。我们的方法还量化了预测的不确定性,这些不确定性来自神经网络参数和输入数据的不确定性。我们在 Poseidon 数据集中位于澳大利亚大陆架 Browse 盆地的四口油井上训练网络。我们在 Browse 盆地的另外两口井上测试了该网络。测试结果表明,加入地震约束后,声波测井的预测效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust unsupervised 5D seismic data reconstruction on both regular and irregular grid Effect of fluid patch clustering on the P-wave velocity-saturation relation: a critical saturation model Strategic Geosteering Workflow with Uncertainty Quantification and Deep Learning: Initial Test on the Goliat Field Data Review on 3D electromagnetic modeling and inversion for Mineral Exploration High dynamic range land wavefield reconstruction from randomized acquisition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1