{"title":"Deep learning-based classification of eye diseases using Convolutional Neural Network for OCT images","authors":"Mohamed Elkholy, Marwa A. Marzouk","doi":"10.3389/fcomp.2023.1252295","DOIUrl":null,"url":null,"abstract":"Deep learning shows promising results in extracting useful information from medical images. The proposed work applies a Convolutional Neural Network (CNN) on retinal images to extract features that allow early detection of ophthalmic diseases. Early disease diagnosis is critical to retinal treatment. Any damage that occurs to retinal tissues that cannot be recovered can result in permanent degradation or even complete loss of sight. The proposed deep-learning algorithm detects three different diseases from features extracted from Optical Coherence Tomography (OCT) images. The deep-learning algorithm uses CNN to classify OCT images into four categories. The four categories are Normal retina, Diabetic Macular Edema (DME), Choroidal Neovascular Membranes (CNM), and Age-related Macular Degeneration (AMD). The proposed work uses publicly available OCT retinal images as a dataset. The experimental results show significant enhancement in classification accuracy while detecting the features of the three listed diseases.","PeriodicalId":52823,"journal":{"name":"Frontiers in Computer Science","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fcomp.2023.1252295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning shows promising results in extracting useful information from medical images. The proposed work applies a Convolutional Neural Network (CNN) on retinal images to extract features that allow early detection of ophthalmic diseases. Early disease diagnosis is critical to retinal treatment. Any damage that occurs to retinal tissues that cannot be recovered can result in permanent degradation or even complete loss of sight. The proposed deep-learning algorithm detects three different diseases from features extracted from Optical Coherence Tomography (OCT) images. The deep-learning algorithm uses CNN to classify OCT images into four categories. The four categories are Normal retina, Diabetic Macular Edema (DME), Choroidal Neovascular Membranes (CNM), and Age-related Macular Degeneration (AMD). The proposed work uses publicly available OCT retinal images as a dataset. The experimental results show significant enhancement in classification accuracy while detecting the features of the three listed diseases.
深度学习在从医学图像中提取有用信息方面取得了可喜的成果。拟议的工作将卷积神经网络(CNN)应用于视网膜图像,以提取可早期检测眼科疾病的特征。早期疾病诊断对视网膜治疗至关重要。视网膜组织受到任何无法恢复的损伤,都可能导致视力永久退化甚至完全丧失。所提出的深度学习算法可根据从光学相干断层扫描(OCT)图像中提取的特征检测三种不同的疾病。深度学习算法使用 CNN 将 OCT 图像分为四类。这四个类别分别是正常视网膜、糖尿病黄斑水肿(DME)、脉络膜新生血管膜(CNM)和年龄相关性黄斑变性(AMD)。建议的工作使用公开的 OCT 视网膜图像作为数据集。实验结果表明,在检测上述三种疾病的特征时,分类准确率有了显著提高。