Engineering quantum criticality for quantum dot power harvesting

Jin-Yi Wang, Lei-Lei Nian, Jing-Tao Lü
{"title":"Engineering quantum criticality for quantum dot power harvesting","authors":"Jin-Yi Wang, Lei-Lei Nian, Jing-Tao Lü","doi":"10.1088/0256-307x/41/2/020503","DOIUrl":null,"url":null,"abstract":"\n Coupling quantum-dot circuits to microwave photons allows one to study the photon-assisted quantum transport. Here, we revisit this typical circuit quantum electrodynamical setup by introducing the Kerr nonlinearity of photons. By exploiting a quantum critical behavior, we propose a powerful scheme to control the power harvesting efficiency in the microwave regime, where the driven-dissipative optical system acts as an energy pump. It drives electron transport against a load in quantum-dot circuit. The energy transfer and consequently the harvesting efficiency is enhanced near the critical point. As the critical point moves towards to low input power, the high efficiency within experimental parameters is achieved. Our results complement fundamental studies of photon-to-electron conversion at the nanoscale, and provide practical guidance for the design of integrated photoelectric device by the quantum criticality.","PeriodicalId":505209,"journal":{"name":"Chinese Physics Letters","volume":"112 41","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0256-307x/41/2/020503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Coupling quantum-dot circuits to microwave photons allows one to study the photon-assisted quantum transport. Here, we revisit this typical circuit quantum electrodynamical setup by introducing the Kerr nonlinearity of photons. By exploiting a quantum critical behavior, we propose a powerful scheme to control the power harvesting efficiency in the microwave regime, where the driven-dissipative optical system acts as an energy pump. It drives electron transport against a load in quantum-dot circuit. The energy transfer and consequently the harvesting efficiency is enhanced near the critical point. As the critical point moves towards to low input power, the high efficiency within experimental parameters is achieved. Our results complement fundamental studies of photon-to-electron conversion at the nanoscale, and provide practical guidance for the design of integrated photoelectric device by the quantum criticality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为量子点功率采集设计量子临界点
将量子点电路与微波光子耦合,可以研究光子辅助的量子传输。在这里,我们通过引入光子的克尔非线性,重新审视了这种典型的电路量子电动力学设置。通过利用量子临界行为,我们提出了一种强大的方案来控制微波系统中的功率收集效率,其中驱动耗散光学系统充当了能量泵的角色。它在量子点电路的负载下驱动电子传输。在临界点附近,能量转移以及由此产生的能量收集效率会得到提高。随着临界点向低输入功率移动,在实验参数范围内实现了高效率。我们的研究结果补充了纳米尺度光子-电子转换的基础研究,并为利用量子临界点设计集成光电器件提供了实际指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gate Tunable Labyrinth Domain Structures in a van der Waals Itinerant Ferromagnet Cr7Te8 Bound and resonating multiquark configurations Solitons and Their Biperiodic Pulsation in Ultrafast Fiber Lasers Based on CB/GO Electronic Correlation and Pseudogap-like Behavior of High-Temperature Superconductor La3Ni2O7 Structural and ferroelectric transition in few-layer HfO2 films from first principles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1