Shouxian Tang, Di Tian, Zheng Li, Zhengduo Wang, Bowen Liu, jiushan Cheng, Zhongwei Liu
{"title":"Preparation of palladium-based catalyst by plasma-assisted atomic layer deposition and its applications in CO2 hydrogenation reduction","authors":"Shouxian Tang, Di Tian, Zheng Li, Zhengduo Wang, Bowen Liu, jiushan Cheng, Zhongwei Liu","doi":"10.1088/2058-6272/ad1fd9","DOIUrl":null,"url":null,"abstract":"\n Supported Pd catalyst is an important noble metal material in recent years due to its high catalytic performance in CO2 hydrogenation. An fluidized-bed plasma assisted atomic layer deposition (FP-ALD) process is reported to fabricate Pd nanoparticle catalyst over γ-Al2O3 or Fe2O3/γ-Al2O3 support, using palladium hexafluoroacetylacetonate as the Pd precursor and H2 plasma as counter-reactant. Scanning transmission electron microscopy exhibits that high-density Pd nanoparticles are uniformly dispersed over Fe2O3/γ-Al2O3 support with an average diameter of 4.4 nm. The deposited Pd-Fe2O3/γ-Al2O3 shows excellent catalytic performance for CO2 hydrogenation in a dielectric barrier discharge reactor. Under a typical condition of H2 to CO2 ratio of 4 in the feed gas, the discharge power of 19.6 W, and gas hourly space velocity of 10000 h-1, the conversion of CO2 is as high as 16.3 % with CH3OH and CH4 selectivities of 26.5 % and 3.9 %, respectively.","PeriodicalId":506986,"journal":{"name":"Plasma Science and Technology","volume":" 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2058-6272/ad1fd9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Supported Pd catalyst is an important noble metal material in recent years due to its high catalytic performance in CO2 hydrogenation. An fluidized-bed plasma assisted atomic layer deposition (FP-ALD) process is reported to fabricate Pd nanoparticle catalyst over γ-Al2O3 or Fe2O3/γ-Al2O3 support, using palladium hexafluoroacetylacetonate as the Pd precursor and H2 plasma as counter-reactant. Scanning transmission electron microscopy exhibits that high-density Pd nanoparticles are uniformly dispersed over Fe2O3/γ-Al2O3 support with an average diameter of 4.4 nm. The deposited Pd-Fe2O3/γ-Al2O3 shows excellent catalytic performance for CO2 hydrogenation in a dielectric barrier discharge reactor. Under a typical condition of H2 to CO2 ratio of 4 in the feed gas, the discharge power of 19.6 W, and gas hourly space velocity of 10000 h-1, the conversion of CO2 is as high as 16.3 % with CH3OH and CH4 selectivities of 26.5 % and 3.9 %, respectively.