Michael L. Cunningham , Jennifer G. Peak , Meyrick J. Peak
{"title":"Single-strand DNA breaks in rodent and human cells produced by superoxide anion or its reduction products","authors":"Michael L. Cunningham , Jennifer G. Peak , Meyrick J. Peak","doi":"10.1016/0167-8817(87)90019-8","DOIUrl":null,"url":null,"abstract":"<div><p>Chinese hamster ovary cells and human P3 teratocarcinoma cells were exposed to superoxide anion (O<sub>2</sub><sup>−</sup>) generated by the addition of potassium superoxide (KO<sub>2</sub>). DNA from the cells was examined by alkaline elution techniques for the production of single-strand breaks, as well as for the production of double-strand breaks and DNA-protein cross-links. It was demonstrated that KO<sub>2</sub> produced only single-strand breaks in DNA in both cell lines, in a dose-dependent manner. The number of breaks was reduced by the prior addition of a metal chelator, indicating that some of the breaks may have been caused by the metal-catalyzed (Fenton reaction) reduction products, hydrogen peroxide or hydroxyl radical. Catalase almost completely inhibited break induction by O<sub>2</sub><sup>−</sup>, evidence for a role of hydrogen peroxide. The results of this study indicate that O<sub>2</sub><sup>−</sup> and its reduction products can damage intracellular mammalian DNA.</p></div>","PeriodicalId":100936,"journal":{"name":"Mutation Research/DNA Repair Reports","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1987-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0167-8817(87)90019-8","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research/DNA Repair Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0167881787900198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37
Abstract
Chinese hamster ovary cells and human P3 teratocarcinoma cells were exposed to superoxide anion (O2−) generated by the addition of potassium superoxide (KO2). DNA from the cells was examined by alkaline elution techniques for the production of single-strand breaks, as well as for the production of double-strand breaks and DNA-protein cross-links. It was demonstrated that KO2 produced only single-strand breaks in DNA in both cell lines, in a dose-dependent manner. The number of breaks was reduced by the prior addition of a metal chelator, indicating that some of the breaks may have been caused by the metal-catalyzed (Fenton reaction) reduction products, hydrogen peroxide or hydroxyl radical. Catalase almost completely inhibited break induction by O2−, evidence for a role of hydrogen peroxide. The results of this study indicate that O2− and its reduction products can damage intracellular mammalian DNA.