Unveiling the Molecular Signature of High-Temperature Cooking: Gas Chromatography-Mass Spectrometry Profiling of Sucrose and Histidine Reactions and Its Derivatives Induce Necrotic Death on THP1 Immune Cells
{"title":"Unveiling the Molecular Signature of High-Temperature Cooking: Gas Chromatography-Mass Spectrometry Profiling of Sucrose and Histidine Reactions and Its Derivatives Induce Necrotic Death on THP1 Immune Cells","authors":"V. S. Periasamy, Jegan Athinarayanan, A. Alshatwi","doi":"10.3390/chemistry6010008","DOIUrl":null,"url":null,"abstract":"High-temperature cooking processes like frying, baking, smoking, or drying can induce chemical transformations in conventional food ingredients, causing deteriorative modifications. These reactions, including hydrolytic, oxidative, and thermal changes, are common and can alter the food’s chemical composition. This study transformed a combination of sucrose and histidine (Su-Hi) through charring or pyrolysis. The GC-MS profiling study showed that when sucrose and histidine (Su-Hi) were exposed to high temperatures (≈240 °C), they produced carbonyl and aromatic compounds including beta-D-Glucopyranose, 1,6-anhydro (10.11%), 2-Butanone, 4,4-dimethoxy- (12.89%), 2(1H)-Quinolinone-hydrazine (5.73%), Benzenamine (6.35%), 2,5-Pyrrolidinedione, 1-[(3,4-dimethylbenzoyl)oxy]- (5.82%), Benzene-(1-ethyl-1-propenyl) (5.62%), and 4-Pyridinamine-2,6-dimethyl (5.52%). The compounds mentioned can permeate the cell membrane and contribute to the development of cell death by necrosis in human immune cells. The evidence suggests that a specific set of pyrolytic compounds may pose a risk to immune cells. This investigation reveals the complex relationship between high-temperature cooking-induced transformations, compound permeation inside the cells, and downstream cellular responses, emphasizing the significance of considering the broader health implications of food chemical contaminants.","PeriodicalId":9850,"journal":{"name":"Chemistry","volume":" 40","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.3390/chemistry6010008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0
Abstract
High-temperature cooking processes like frying, baking, smoking, or drying can induce chemical transformations in conventional food ingredients, causing deteriorative modifications. These reactions, including hydrolytic, oxidative, and thermal changes, are common and can alter the food’s chemical composition. This study transformed a combination of sucrose and histidine (Su-Hi) through charring or pyrolysis. The GC-MS profiling study showed that when sucrose and histidine (Su-Hi) were exposed to high temperatures (≈240 °C), they produced carbonyl and aromatic compounds including beta-D-Glucopyranose, 1,6-anhydro (10.11%), 2-Butanone, 4,4-dimethoxy- (12.89%), 2(1H)-Quinolinone-hydrazine (5.73%), Benzenamine (6.35%), 2,5-Pyrrolidinedione, 1-[(3,4-dimethylbenzoyl)oxy]- (5.82%), Benzene-(1-ethyl-1-propenyl) (5.62%), and 4-Pyridinamine-2,6-dimethyl (5.52%). The compounds mentioned can permeate the cell membrane and contribute to the development of cell death by necrosis in human immune cells. The evidence suggests that a specific set of pyrolytic compounds may pose a risk to immune cells. This investigation reveals the complex relationship between high-temperature cooking-induced transformations, compound permeation inside the cells, and downstream cellular responses, emphasizing the significance of considering the broader health implications of food chemical contaminants.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2017 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.