ОСОБЛИВОСТІ ПОПЕРЕДНЬОЇ ОБРОБКИ ТА ГРУПУВАННЯ ТРЕНУВАЛЬНИХ ДАННИХ НЕЙРОННОЇ МЕРЕЖІ ДЛЯ ПІДВИЩЕННЯ ТОЧНОСТІ РОЗПІЗНАВАННЯ ОБ’ЄКТІВ НА ОСНОВІ MOBILENETV2
{"title":"ОСОБЛИВОСТІ ПОПЕРЕДНЬОЇ ОБРОБКИ ТА ГРУПУВАННЯ ТРЕНУВАЛЬНИХ ДАННИХ НЕЙРОННОЇ МЕРЕЖІ ДЛЯ ПІДВИЩЕННЯ ТОЧНОСТІ РОЗПІЗНАВАННЯ ОБ’ЄКТІВ НА ОСНОВІ MOBILENETV2","authors":"Р. В. Денісов, Павел Васильевич Попович","doi":"10.30857/2786-5371.2023.5.1","DOIUrl":null,"url":null,"abstract":"Мета. Дослідження можливостей підвищення точності та варіативності розпізнавання різних груп об’єктів зі схожою надлишковою інформацією нейронною мережею, після попередньої обробки та групування тренувальних зображень для подальшого використання на мікроконтролерах. Перевірено вплив видалення зайвої інформації у тренувальних даних на практичні значення точності розпізнавання різних категорій об’єктів на основі архітектури MobileNet V2. \nМетодика. Створення різних груп тренувальних зображень з використанням програмної платформи Edge Impulse. Обробка зображень методом видалення зайвих об'єктів у графічному редакторі Adobe Photoshop. Перевірка точності розпізнавання необробленої, обробленої та змішаної груп тренувальних зображень. \nРезультати. На базі програмної платформи Edge Impulse створено декілька груп тренувальних зображень. У частині зображень за допомогою графічного редактора Adobe Photoshop видалено усі зайві елементи. Встановлено, що при наявності схожої зайвої інформації на тренувальних даних, у різних категоріях об’єктів, у результаті розпізнавання виникають нерозпізнані та помилково розпізнані тестові зображення. Експериментально отримано, що метод видалення зайвої інформації з тренувальних зображень дає більш чіткий розподіл ознак, а поєднання необроблених та оброблених тренувальних даних дають середній приріст у точності розпізнавання більше ніж 10% для кожної категорії, а також суттєве зменшення нерозпізнаних та невірно розпізнаних тестових зображень, при тій самій кількості тренувальних даних. \nНаукова новизна. Отримано комбінований метод обробки та групування тренувальних даних, що підвищує точність розпізнавання об'єктів без збільшення кількості тренувальних даних. Досліджено вплив схожої надлишкової інформації у різних категоріях об’єктів на точність розпізнавання. \nПрактична значимість. Отримані результати дозволяють здійснити підвищення точності розпізнавання різних груп об’єктів зі схожою надлишковою інформацією однією нейронною мережею без підвищення кількості тренувальних зображень.","PeriodicalId":22554,"journal":{"name":"Technologies and Engineering","volume":" 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technologies and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30857/2786-5371.2023.5.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Мета. Дослідження можливостей підвищення точності та варіативності розпізнавання різних груп об’єктів зі схожою надлишковою інформацією нейронною мережею, після попередньої обробки та групування тренувальних зображень для подальшого використання на мікроконтролерах. Перевірено вплив видалення зайвої інформації у тренувальних даних на практичні значення точності розпізнавання різних категорій об’єктів на основі архітектури MobileNet V2.
Методика. Створення різних груп тренувальних зображень з використанням програмної платформи Edge Impulse. Обробка зображень методом видалення зайвих об'єктів у графічному редакторі Adobe Photoshop. Перевірка точності розпізнавання необробленої, обробленої та змішаної груп тренувальних зображень.
Результати. На базі програмної платформи Edge Impulse створено декілька груп тренувальних зображень. У частині зображень за допомогою графічного редактора Adobe Photoshop видалено усі зайві елементи. Встановлено, що при наявності схожої зайвої інформації на тренувальних даних, у різних категоріях об’єктів, у результаті розпізнавання виникають нерозпізнані та помилково розпізнані тестові зображення. Експериментально отримано, що метод видалення зайвої інформації з тренувальних зображень дає більш чіткий розподіл ознак, а поєднання необроблених та оброблених тренувальних даних дають середній приріст у точності розпізнавання більше ніж 10% для кожної категорії, а також суттєве зменшення нерозпізнаних та невірно розпізнаних тестових зображень, при тій самій кількості тренувальних даних.
Наукова новизна. Отримано комбінований метод обробки та групування тренувальних даних, що підвищує точність розпізнавання об'єктів без збільшення кількості тренувальних даних. Досліджено вплив схожої надлишкової інформації у різних категоріях об’єктів на точність розпізнавання.
Практична значимість. Отримані результати дозволяють здійснити підвищення точності розпізнавання різних груп об’єктів зі схожою надлишковою інформацією однією нейронною мережею без підвищення кількості тренувальних зображень.