Impedance Response Analysis of Anion Exchange Membrane Electrolyzers for Determination of the Electrochemically Active Catalyst Surface Area

IF 6.1 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemistry methods : new approaches to solving problems in chemistry Pub Date : 2024-01-12 DOI:10.1002/cmtd.202300035
Dr. Sebastian A. Watzele, Dr. Regina M. Kluge, Dr. Artjom Maljusch, Patrick Borowski, Prof. Dr. Aliaksandr S. Bandarenka
{"title":"Impedance Response Analysis of Anion Exchange Membrane Electrolyzers for Determination of the Electrochemically Active Catalyst Surface Area","authors":"Dr. Sebastian A. Watzele,&nbsp;Dr. Regina M. Kluge,&nbsp;Dr. Artjom Maljusch,&nbsp;Patrick Borowski,&nbsp;Prof. Dr. Aliaksandr S. Bandarenka","doi":"10.1002/cmtd.202300035","DOIUrl":null,"url":null,"abstract":"<p>Polymer membrane electrolyzers benefit from high-pressure operation conditions and low gas cross-over and can either conduct protons (H<sup>+</sup>) or hydroxide ions (OH<sup>−</sup>). Both types of electrolyzers have a similar design, but differ in power density and the choice of catalysts. Despite the significant endeavor of their optimization, to date, there is no well-established impedance model for detailed analysis for either type of these devices. This complicates the <i>in-situ</i> characterization of electrolyzers, hindering the investigation of degradation mechanisms and electrocatalytic processes as a function of applied current density or time. Nevertheless, a detailed understanding of such individual processes and distinguishing the performance-limiting factors are the keystones for sophisticated device optimization. In this work, an impedance model based on electrode processes has been developed for an anion exchange membrane electrolyzer utilizing iridium oxide anode and platinum cathode electrocatalysts. This model allows to deconvolute the measured impedances into constituents related to the individual electrode processes and to estimate actual physico-chemical quantities such as the reaction kinetic parameters and double-layer capacitances. We discuss the meaning of the fitting parameters and show that this model enables, for the first time, the estimation of the electrochemically active surface area of the anode electrocatalysts under reaction conditions.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202300035","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry methods : new approaches to solving problems in chemistry","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmtd.202300035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer membrane electrolyzers benefit from high-pressure operation conditions and low gas cross-over and can either conduct protons (H+) or hydroxide ions (OH). Both types of electrolyzers have a similar design, but differ in power density and the choice of catalysts. Despite the significant endeavor of their optimization, to date, there is no well-established impedance model for detailed analysis for either type of these devices. This complicates the in-situ characterization of electrolyzers, hindering the investigation of degradation mechanisms and electrocatalytic processes as a function of applied current density or time. Nevertheless, a detailed understanding of such individual processes and distinguishing the performance-limiting factors are the keystones for sophisticated device optimization. In this work, an impedance model based on electrode processes has been developed for an anion exchange membrane electrolyzer utilizing iridium oxide anode and platinum cathode electrocatalysts. This model allows to deconvolute the measured impedances into constituents related to the individual electrode processes and to estimate actual physico-chemical quantities such as the reaction kinetic parameters and double-layer capacitances. We discuss the meaning of the fitting parameters and show that this model enables, for the first time, the estimation of the electrochemically active surface area of the anode electrocatalysts under reaction conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于确定电化学活性催化剂表面积的阴离子交换膜电解器阻抗响应分析
聚合物膜电解槽得益于高压运行条件和低气体交叉,可以传导质子 (H+) 或氢氧根离子 (OH-)。这两种类型的电解槽设计相似,但在功率密度和催化剂的选择上有所不同。尽管对它们进行了大量的优化工作,但迄今为止,还没有一个完善的阻抗模型可用于对这两类设备进行详细分析。这使得电解槽的现场表征变得复杂,阻碍了对降解机制和电催化过程与应用电流密度或时间的函数关系的研究。尽管如此,详细了解这些单个过程并区分性能限制因素是进行复杂设备优化的关键。在这项工作中,我们为使用氧化铱阳极和铂阴极电催化剂的阴离子交换膜电解槽开发了一个基于电极过程的阻抗模型。通过该模型,可以将测量到的阻抗分解为与各个电极过程相关的成分,并估算出实际的物理化学量,如反应动力学参数和双层电容。我们讨论了拟合参数的含义,并表明该模型首次能够估算反应条件下阳极电催化剂的电化学活性表面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.30
自引率
0.00%
发文量
0
期刊最新文献
Cover Picture: (Chem. Methods 9/2024) Insights into CO2 Diffusion on Zeolite 13X via Frequency Response Technique Cover Picture: (Chem. Methods 7-8/2024) Ultraselective, Ultrahigh Resolution 1D TOCSY Conjugation Methods in Synthetic Glycoconjugate Vaccines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1