Exploring ChatGPT for next-generation information retrieval: Opportunities and challenges

Yizheng Huang, Jimmy X. Huang
{"title":"Exploring ChatGPT for next-generation information retrieval: Opportunities and challenges","authors":"Yizheng Huang, Jimmy X. Huang","doi":"10.3233/web-230363","DOIUrl":null,"url":null,"abstract":"The rapid advancement of artificial intelligence (AI) has spotlighted ChatGPT as a key technology in the realm of information retrieval (IR). Unlike its predecessors, it offers notable advantages that have captured the interest of both industry and academia. While some consider ChatGPT to be a revolutionary innovation, others believe its success stems from smart product and market strategy integration. The advent of ChatGPT and GPT-4 has ushered in a new era of Generative AI, producing content that diverges from training examples, and surpassing the capabilities of OpenAI’s previous GPT-3 model. In contrast to the established supervised learning approach in IR tasks, ChatGPT challenges traditional paradigms, introducing fresh challenges and opportunities in text quality assurance, model bias, and efficiency. This paper aims to explore the influence of ChatGPT on IR tasks, providing insights into its potential future trajectory.","PeriodicalId":506532,"journal":{"name":"Web Intelligence","volume":" 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/web-230363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid advancement of artificial intelligence (AI) has spotlighted ChatGPT as a key technology in the realm of information retrieval (IR). Unlike its predecessors, it offers notable advantages that have captured the interest of both industry and academia. While some consider ChatGPT to be a revolutionary innovation, others believe its success stems from smart product and market strategy integration. The advent of ChatGPT and GPT-4 has ushered in a new era of Generative AI, producing content that diverges from training examples, and surpassing the capabilities of OpenAI’s previous GPT-3 model. In contrast to the established supervised learning approach in IR tasks, ChatGPT challenges traditional paradigms, introducing fresh challenges and opportunities in text quality assurance, model bias, and efficiency. This paper aims to explore the influence of ChatGPT on IR tasks, providing insights into its potential future trajectory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索用于下一代信息检索的 ChatGPT:机遇与挑战
人工智能(AI)的飞速发展使 ChatGPT 成为信息检索(IR)领域的一项关键技术。与之前的技术不同,它具有显著的优势,吸引了工业界和学术界的兴趣。一些人认为 ChatGPT 是一项革命性的创新,而另一些人则认为它的成功源于巧妙的产品和市场战略整合。ChatGPT 和 GPT-4 的出现开创了生成式人工智能的新时代,它所生成的内容与训练示例截然不同,并超越了 OpenAI 之前的 GPT-3 模型的能力。与红外任务中既有的监督学习方法相比,ChatGPT 挑战了传统范式,在文本质量保证、模型偏差和效率方面引入了新的挑战和机遇。本文旨在探讨 ChatGPT 对 IR 任务的影响,为其未来的潜在发展轨迹提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Event type induction using latent variables with hierarchical relationship analysis 20 years of Web Intelligence: Call for a new era of AI in the Connected World Preventing malware propagation in wireless sensor networks: Hybrid optimization algorithm for controlling Analysis of the effectiveness of the augmented reality technique as an influence on the digital marketing Deep hybrid classification model for leaf disease classification of underground crops
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1