{"title":"A wind speed interval prediction method for reducing noise uncertainty","authors":"Kun Li, Yayu Liu, Ying Han","doi":"10.1177/0309524x231217262","DOIUrl":null,"url":null,"abstract":"Due to the noise uncertainty, the conventional point prediction model is difficult to describe the actual characteristics of wind speed and lacks a description of the wind speed fluctuation range. In this paper, the kernel density estimation according to its error value is given, and then its fluctuation range is found to combine the prediction results of the test set to get its prediction range. Firstly, the singular spectrum analysis (SSA) is introduced to conduct the noise reduction, and variational modal decomposition (VMD) is performed to handle the sequences, then an improved slime mold algorithm (SMA) is proposed to optimize the VMD, and the stochastic configuration networks (SCNs) is applied to perform the prediction. Finally, the interval prediction results are calculated by fusing the point prediction error and kernel density estimation. The experimental results demonstrate that the proposed method can effectively reduce the noise interference in the wind speed prediction.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0309524x231217262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the noise uncertainty, the conventional point prediction model is difficult to describe the actual characteristics of wind speed and lacks a description of the wind speed fluctuation range. In this paper, the kernel density estimation according to its error value is given, and then its fluctuation range is found to combine the prediction results of the test set to get its prediction range. Firstly, the singular spectrum analysis (SSA) is introduced to conduct the noise reduction, and variational modal decomposition (VMD) is performed to handle the sequences, then an improved slime mold algorithm (SMA) is proposed to optimize the VMD, and the stochastic configuration networks (SCNs) is applied to perform the prediction. Finally, the interval prediction results are calculated by fusing the point prediction error and kernel density estimation. The experimental results demonstrate that the proposed method can effectively reduce the noise interference in the wind speed prediction.
期刊介绍:
Having been in continuous publication since 1977, Wind Engineering is the oldest and most authoritative English language journal devoted entirely to the technology of wind energy. Under the direction of a distinguished editor and editorial board, Wind Engineering appears bimonthly with fully refereed contributions from active figures in the field, book notices, and summaries of the more interesting papers from other sources. Papers are published in Wind Engineering on: the aerodynamics of rotors and blades; machine subsystems and components; design; test programmes; power generation and transmission; measuring and recording techniques; installations and applications; and economic, environmental and legal aspects.