Selecting Indispensable Edge Patterns With Adaptive Sampling and Double Local Analysis for Data Description

Pub Date : 2024-01-12 DOI:10.4018/jcit.335945
Huina Li, Yuan Ping
{"title":"Selecting Indispensable Edge Patterns With Adaptive Sampling and Double Local Analysis for Data Description","authors":"Huina Li, Yuan Ping","doi":"10.4018/jcit.335945","DOIUrl":null,"url":null,"abstract":"Support vector data description (SVDD) inspires us in data analysis, adversarial training, and machine unlearning. However, collecting support vectors requires pricey computation, while the alternative boundary selection with O(N2) is still a challenge. The authors propose an indispensable edge pattern selection method (IEPS) for data description with direct SVDD model building. IEPS suggests a double local analysis to select the global edge patterns. Edge patterns belong to a subset of the target problem of SVDD and its variants, and neighbor analysis becomes pivotal. While an excessive number of participating data result in redundant computations, an insufficient number may impede data separability or compromise the model's quality. Consequently, a data-adaptive sampling strategy has been devised to ascertain an optimal ratio of retained data for edge pattern selection. Extensive experiments indicate that IEPS keeps indispensable edge patterns for data description while reducing the interference in the norm vector generation to guarantee the effectiveness for clustering analysis.","PeriodicalId":0,"journal":{"name":"","volume":" 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jcit.335945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Support vector data description (SVDD) inspires us in data analysis, adversarial training, and machine unlearning. However, collecting support vectors requires pricey computation, while the alternative boundary selection with O(N2) is still a challenge. The authors propose an indispensable edge pattern selection method (IEPS) for data description with direct SVDD model building. IEPS suggests a double local analysis to select the global edge patterns. Edge patterns belong to a subset of the target problem of SVDD and its variants, and neighbor analysis becomes pivotal. While an excessive number of participating data result in redundant computations, an insufficient number may impede data separability or compromise the model's quality. Consequently, a data-adaptive sampling strategy has been devised to ascertain an optimal ratio of retained data for edge pattern selection. Extensive experiments indicate that IEPS keeps indispensable edge patterns for data description while reducing the interference in the norm vector generation to guarantee the effectiveness for clustering analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
利用自适应采样和双局部分析选择不可或缺的边缘模式进行数据描述
支持向量数据描述(SVDD)给我们的数据分析、对抗训练和机器学习带来了启发。然而,收集支持向量需要昂贵的计算,而用 O(N2) 进行替代边界选择仍是一个挑战。作者提出了一种不可或缺的边缘模式选择方法(IEPS),用于直接建立 SVDD 模型的数据描述。IEPS 建议通过双重局部分析来选择全局边缘模式。边缘模式属于 SVDD 及其变体的目标问题子集,因此邻接分析变得至关重要。过多的参与数据会导致冗余计算,而过少的参与数据则会妨碍数据分离或影响模型质量。因此,我们设计了一种数据适应性采样策略,以确定边缘模式选择中保留数据的最佳比例。广泛的实验表明,IEPS 既保留了数据描述中不可或缺的边缘模式,又减少了对规范向量生成的干扰,从而保证了聚类分析的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1