Numerical Assessment of Tsunami Forces on Vertical Wall Structures: Impact of Inundation Depth and Incident Fluid Velocity

Q2 Mathematics CFD Letters Pub Date : 2024-01-11 DOI:10.37934/cfdl.16.5.7890
Emad Hussein, Farhan Lafta Rashid, Najah Al Maimuri, Ali Basem, Hayder Ibrahim Mohammed
{"title":"Numerical Assessment of Tsunami Forces on Vertical Wall Structures: Impact of Inundation Depth and Incident Fluid Velocity","authors":"Emad Hussein, Farhan Lafta Rashid, Najah Al Maimuri, Ali Basem, Hayder Ibrahim Mohammed","doi":"10.37934/cfdl.16.5.7890","DOIUrl":null,"url":null,"abstract":"This study evaluates the tsunami forces exerted on a terrestrial structure caused by a collision-induced tsunami. Conventionally, assessing these forces relies on the inundation depth of the colliding tsunami passing without the presence of the terrestrial structure. However, it is essential to consider the inundation depth and incident fluid velocity, as both significantly influence the resulting tsunami forces. In this research, ANSYS Fluent 17.2 is employed to simulate excitation sources using a Defined Function (UDF) code within a C++ framework. The dynamic meshing technique is adopted to replicate the interactions between the bore pressure of the tsunami and an idealised vertical wall structure across three distinct water levels. Computational Fluid Dynamics (CFD) modelling demonstrates the proposed methodology's capability to offer precise impact pressure distributions concerning geographical and temporal aspects. The findings reveal specific instances: at a water depth of 10 m, the maximum Froude number is attained at 3.5 and 6.9 seconds, corresponding to a maximum pressure value of 3.9x105 Pa at 3.85 seconds for a water flow velocity of 20 m/sec. Similarly, for a water depth of 12 m, the most significant Froude number is observed at 3.95 and 6.9 seconds, with a peak pressure value of 1.8x105 Pa at 4.6 seconds, associated with a water flow velocity of 15 m/s. Additionally, at a water depth of 14 m, the maximum Froude number is reached at 4.95 and 7.1 seconds, accompanied by a maximum pressure value of 7.4x104 Pa at 4.85 seconds for a water flow velocity of 10 m/s.","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":" 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CFD Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/cfdl.16.5.7890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates the tsunami forces exerted on a terrestrial structure caused by a collision-induced tsunami. Conventionally, assessing these forces relies on the inundation depth of the colliding tsunami passing without the presence of the terrestrial structure. However, it is essential to consider the inundation depth and incident fluid velocity, as both significantly influence the resulting tsunami forces. In this research, ANSYS Fluent 17.2 is employed to simulate excitation sources using a Defined Function (UDF) code within a C++ framework. The dynamic meshing technique is adopted to replicate the interactions between the bore pressure of the tsunami and an idealised vertical wall structure across three distinct water levels. Computational Fluid Dynamics (CFD) modelling demonstrates the proposed methodology's capability to offer precise impact pressure distributions concerning geographical and temporal aspects. The findings reveal specific instances: at a water depth of 10 m, the maximum Froude number is attained at 3.5 and 6.9 seconds, corresponding to a maximum pressure value of 3.9x105 Pa at 3.85 seconds for a water flow velocity of 20 m/sec. Similarly, for a water depth of 12 m, the most significant Froude number is observed at 3.95 and 6.9 seconds, with a peak pressure value of 1.8x105 Pa at 4.6 seconds, associated with a water flow velocity of 15 m/s. Additionally, at a water depth of 14 m, the maximum Froude number is reached at 4.95 and 7.1 seconds, accompanied by a maximum pressure value of 7.4x104 Pa at 4.85 seconds for a water flow velocity of 10 m/s.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海啸力对垂直墙结构的数值评估:淹没深度和入射流体速度的影响
本研究评估了碰撞引发的海啸对陆地结构造成的海啸力。通常情况下,评估这些作用力依赖于碰撞海啸在没有地面结构存在的情况下通过的淹没深度。然而,必须考虑淹没深度和入射流体速度,因为两者都会对所产生的海啸力产生重大影响。本研究采用 ANSYS Fluent 17.2 在 C++ 框架内使用定义函数(UDF)代码模拟激振源。采用动态网格技术来复制海啸孔压与理想化垂直墙体结构在三个不同水位之间的相互作用。计算流体动力学(CFD)建模展示了所提出的方法在地理和时间方面提供精确冲击压力分布的能力。研究结果揭示了一些具体实例:在水深 10 米处,最大弗劳德数在 3.5 秒和 6.9 秒时达到,对应于 20 米/秒的水流速度,在 3.85 秒时的最大压力值为 3.9x105 帕。同样,水深为 12 米时,在 3.95 秒和 6.9 秒时观测到最显著的 Froude 数,在 4.6 秒时达到 1.8x105 帕的压力峰值,水流速度为 15 米/秒。此外,在水深 14 米处,4.95 秒和 7.1 秒时达到最大 Froude 数,4.85 秒时的最大压力值为 7.4x104 帕,水流速度为 10 米/秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CFD Letters
CFD Letters Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
3.40
自引率
0.00%
发文量
76
期刊最新文献
Numerical Investigation of Thermal Performance for Turbulent Water Flow through Dimpled Pipe MHD Stagnation Point Flow of Micropolar Fluid over a Stretching/ Shrinking Sheet Unsteady MHD Walter’s-B Viscoelastic Flow Past a Vertical Porous Plate Effects of Activation Energy and Diffusion Thermo an Unsteady MHD Maxwell Fluid Flow over a Porous Vertical Stretched Sheet in the Presence of Thermophoresis and Brownian Motion Effect of Inlet Pressure on the Polyurethane Spray Nozzle for Soil Cracking Improvement: Simulations using CFD Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1