{"title":"A low‐voltage‐driven, neuromorphic sensorimotor loop for monolithic soft prosthetic e‐skin","authors":"Xiangxiang Li, Darakhshan Mehvish, Hui Yang","doi":"10.1002/smm2.1248","DOIUrl":null,"url":null,"abstract":"Artificial skin with tactile perceptions is anticipated to play a pivotal role in next‐generation robotic and medical devices. The primary challenge lies in creating a biomimetic system that seamlessly integrates with the human body and biological systems. The authors have developed an electronic skin (e‐skin) that imitates the biological sensorimotor loop through medium‐scale circuit integration, boasting low power consumption and solid‐state synaptic transistors.","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SmartMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smm2.1248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial skin with tactile perceptions is anticipated to play a pivotal role in next‐generation robotic and medical devices. The primary challenge lies in creating a biomimetic system that seamlessly integrates with the human body and biological systems. The authors have developed an electronic skin (e‐skin) that imitates the biological sensorimotor loop through medium‐scale circuit integration, boasting low power consumption and solid‐state synaptic transistors.