Q. E. Wafford, AHIP, Corinne H. Miller, Annie B. Wescott, Ramune K. Kubilius, AHIP
{"title":"Meeting a need: development and validation of PubMed search filters for immigrant populations","authors":"Q. E. Wafford, AHIP, Corinne H. Miller, Annie B. Wescott, Ramune K. Kubilius, AHIP","doi":"10.5195/jmla.2024.1716","DOIUrl":null,"url":null,"abstract":"Objective: There is a need for additional comprehensive and validated filters to find relevant references more efficiently in the growing body of research on immigrant populations. Our goal was to create reliable search filters that direct librarians and researchers to pertinent studies indexed in PubMed about health topics specific to immigrant populations.\nMethods: We applied a systematic and multi-step process that combined information from expert input, authoritative sources, automation, and manual review of sources. We established a focused scope and eligibility criteria, which we used to create the development and validation sets. We formed a term ranking system that resulted in the creation of two filters: an immigrant-specific and an immigrant-sensitive search filter.\nResults: When tested against the validation set, the specific filter sensitivity was 88.09%, specificity 97.26%, precision 97.88%, and the NNR 1.02. The sensitive filter sensitivity was 97.76%when tested against the development set. The sensitive filter had a sensitivity of 97.14%, specificity of 82.05%, precision of 88.59%, accuracy of 90.94%, and NNR [See Table 1] of 1.13 when tested against the validation set.\nConclusion: We accomplished our goal of developing PubMed search filters to help researchers retrieve studies about immigrants. The specific and sensitive PubMed search filters give information professionals and researchers options to maximize the specificity and precision or increase the sensitivity of their search for relevant studies in PubMed. Both search filters generated strong performance measurements and can be used as-is, to capture a subset of immigrant-related literature, or adapted and revised to fit the unique research needs of specific project teams (e.g. remove US-centric language, add location-specific terminology, or expand the search strategy to include terms for the topic/s being investigated in the immigrant population identified by the filter). There is also a potential for teams to employ the search filter development process described here for their own topics and use.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" 17","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.5195/jmla.2024.1716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: There is a need for additional comprehensive and validated filters to find relevant references more efficiently in the growing body of research on immigrant populations. Our goal was to create reliable search filters that direct librarians and researchers to pertinent studies indexed in PubMed about health topics specific to immigrant populations.
Methods: We applied a systematic and multi-step process that combined information from expert input, authoritative sources, automation, and manual review of sources. We established a focused scope and eligibility criteria, which we used to create the development and validation sets. We formed a term ranking system that resulted in the creation of two filters: an immigrant-specific and an immigrant-sensitive search filter.
Results: When tested against the validation set, the specific filter sensitivity was 88.09%, specificity 97.26%, precision 97.88%, and the NNR 1.02. The sensitive filter sensitivity was 97.76%when tested against the development set. The sensitive filter had a sensitivity of 97.14%, specificity of 82.05%, precision of 88.59%, accuracy of 90.94%, and NNR [See Table 1] of 1.13 when tested against the validation set.
Conclusion: We accomplished our goal of developing PubMed search filters to help researchers retrieve studies about immigrants. The specific and sensitive PubMed search filters give information professionals and researchers options to maximize the specificity and precision or increase the sensitivity of their search for relevant studies in PubMed. Both search filters generated strong performance measurements and can be used as-is, to capture a subset of immigrant-related literature, or adapted and revised to fit the unique research needs of specific project teams (e.g. remove US-centric language, add location-specific terminology, or expand the search strategy to include terms for the topic/s being investigated in the immigrant population identified by the filter). There is also a potential for teams to employ the search filter development process described here for their own topics and use.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.