Blind and Non-Blind Deconvolution-Based Image Deblurring Techniques for Blurred and Noisy Image

Q3 Environmental Science Tikrit Journal of Engineering Sciences Pub Date : 2024-01-09 DOI:10.25130/tjes.31.1.2
S. W. Nourildean
{"title":"Blind and Non-Blind Deconvolution-Based Image Deblurring Techniques for Blurred and Noisy Image","authors":"S. W. Nourildean","doi":"10.25130/tjes.31.1.2","DOIUrl":null,"url":null,"abstract":"Abstract: Image deblurring is a common issue in low-level computer vision aiming to restore a clear image from a blurred input image. Deep learning innovations have significantly advanced the solution to this issue, and numerous deblurring networks have been presented to recover high-quality images. This study aims to investigate the impact of Blind deconvolution and Non-Blind Deconvolution (Weiner Filter, Regularized Filter, and lucky Richardson) deblurring techniques and blind deconvolution to retrieve the original image from the blurring and the noisy images. Point Spread Function (PSF) is required to perform the deconvolution process. MATLAB program is utilized in this study as a suitable tool for image processing. Peak to Signal Ratio (PSNR) and structural index similarity (SSIM) are the major parameters used to examine image quality. The results showed that the Regularized Filter was an effective technique to deblur the blurry image, and it achieved the largest PSNR and best SSIM with the prior information about the PSF for different degrees of blurring angle. These four deblurring techniques were unsuccessful in restoring the original image from the image with Gaussian noise.","PeriodicalId":30589,"journal":{"name":"Tikrit Journal of Engineering Sciences","volume":" 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tikrit Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25130/tjes.31.1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract: Image deblurring is a common issue in low-level computer vision aiming to restore a clear image from a blurred input image. Deep learning innovations have significantly advanced the solution to this issue, and numerous deblurring networks have been presented to recover high-quality images. This study aims to investigate the impact of Blind deconvolution and Non-Blind Deconvolution (Weiner Filter, Regularized Filter, and lucky Richardson) deblurring techniques and blind deconvolution to retrieve the original image from the blurring and the noisy images. Point Spread Function (PSF) is required to perform the deconvolution process. MATLAB program is utilized in this study as a suitable tool for image processing. Peak to Signal Ratio (PSNR) and structural index similarity (SSIM) are the major parameters used to examine image quality. The results showed that the Regularized Filter was an effective technique to deblur the blurry image, and it achieved the largest PSNR and best SSIM with the prior information about the PSF for different degrees of blurring angle. These four deblurring techniques were unsuccessful in restoring the original image from the image with Gaussian noise.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于盲和非盲解卷积的模糊和噪声图像去模糊技术
摘要:图像去模糊是低级计算机视觉中的一个常见问题,旨在从模糊的输入图像中还原出清晰的图像。深度学习创新极大地推动了这一问题的解决,众多去模糊网络被提出来用于恢复高质量图像。本研究旨在研究盲法去卷积和非盲法去卷积(Weiner 滤波器、正则化滤波器和幸运 Richardson)去毛刺技术和盲法去卷积对从模糊和噪声图像中检索原始图像的影响。执行解卷积过程需要点展宽函数(PSF)。本研究使用 MATLAB 程序作为图像处理的合适工具。峰值信号比(PSNR)和结构指数相似度(SSIM)是用于检测图像质量的主要参数。结果表明,正则化滤波器是一种有效的模糊图像去模糊技术,它在不同模糊角度下,利用 PSF 的先验信息获得了最大的 PSNR 和最佳的 SSIM。这四种去模糊技术都无法从高斯噪声图像中恢复原始图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
56
审稿时长
8 weeks
期刊最新文献
Generative AI Chatbot for Engineering Scientific Journal MnO2 Nano Particles Modified a Double Layer Cathode Reactor for an Efficient Removal of DBT in Diesel Underwater Wireless Optical Communication for IOT using Coding MIMO Diversity Climate Change’s Impacts on Drought in Upper Zab Basin, Iraq: A Case Study Cascaded H–Bridge Multilevel Inverter: Review of Topologies and Pulse Width Modulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1