Liuping Wang, Ziyi Chen, Jinping Liu, Jin Zhang, A. Alkhateeb
{"title":"Toward automated hail disaster weather recognition based on spatio-temporal sequence of radar images","authors":"Liuping Wang, Ziyi Chen, Jinping Liu, Jin Zhang, A. Alkhateeb","doi":"10.1515/dema-2023-0262","DOIUrl":null,"url":null,"abstract":"\n Hail, an intense convective catastrophic weather, is seriously hazardous to people’s lives and properties. This article proposes a multi-step cyclone hail weather recognition model, called long short-term memory (LSTM)-C3D, based on radar images, integrating attention mechanism and network voting optimization characteristics to achieve intelligent recognition and accurate classification of hailstorm weather based on long short-term memory networks. Based on radar echo data in the strong-echo region, LSTM-C3D can selectively fuse the long short-term time feature information of hail meteorological images and effectively focus on the significant features to achieve intelligent recognition of hail disaster weather. The meteorological scans of 11 Doppler weather radars deployed in various regions of the Hunan Province of China are used as the specific experimental and application objects for extensive validation and comparison experiments. The results show that the proposed method can realize the automatic extraction of radar reflectivity image features, and the accuracy of hail identification in the strong-echo region reaches 91.3%. It can also effectively realize the prediction of convective storm movement trends, laying the theoretical foundation for reducing the misjudgment of extreme disaster weather.","PeriodicalId":10995,"journal":{"name":"Demonstratio Mathematica","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demonstratio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2023-0262","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Hail, an intense convective catastrophic weather, is seriously hazardous to people’s lives and properties. This article proposes a multi-step cyclone hail weather recognition model, called long short-term memory (LSTM)-C3D, based on radar images, integrating attention mechanism and network voting optimization characteristics to achieve intelligent recognition and accurate classification of hailstorm weather based on long short-term memory networks. Based on radar echo data in the strong-echo region, LSTM-C3D can selectively fuse the long short-term time feature information of hail meteorological images and effectively focus on the significant features to achieve intelligent recognition of hail disaster weather. The meteorological scans of 11 Doppler weather radars deployed in various regions of the Hunan Province of China are used as the specific experimental and application objects for extensive validation and comparison experiments. The results show that the proposed method can realize the automatic extraction of radar reflectivity image features, and the accuracy of hail identification in the strong-echo region reaches 91.3%. It can also effectively realize the prediction of convective storm movement trends, laying the theoretical foundation for reducing the misjudgment of extreme disaster weather.
期刊介绍:
Demonstratio Mathematica publishes original and significant research on topics related to functional analysis and approximation theory. Please note that submissions related to other areas of mathematical research will no longer be accepted by the journal. The potential topics include (but are not limited to): -Approximation theory and iteration methods- Fixed point theory and methods of computing fixed points- Functional, ordinary and partial differential equations- Nonsmooth analysis, variational analysis and convex analysis- Optimization theory, variational inequalities and complementarity problems- For more detailed list of the potential topics please refer to Instruction for Authors. The journal considers submissions of different types of articles. "Research Articles" are focused on fundamental theoretical aspects, as well as on significant applications in science, engineering etc. “Rapid Communications” are intended to present information of exceptional novelty and exciting results of significant interest to the readers. “Review articles” and “Commentaries”, which present the existing literature on the specific topic from new perspectives, are welcome as well.