{"title":"Screening Commercial Tea for Rapid Inactivation of Infectious SARS-CoV-2 in Saliva","authors":"Julianna N. Morris, Malak A. Esseili","doi":"10.1007/s12560-023-09581-0","DOIUrl":null,"url":null,"abstract":"<div><p>SARS-CoV-2 infects the oral mucosa and is shed in salivary fluids. Traditionally, tea has been used by various cultures to treat respiratory ailments. The objective of this study was to identify commercially available teas that can rapidly inactivate infectious SARS-CoV-2 in saliva. Initially, tea (<i>n</i> = 24) was prepared as 40 mg/mL infusions and incubated with SARS-CoV-2 resuspended in water, for 5 min at 37 °C. Then, five teas that showed >3 log reduction in virus infectivity were further investigated at 40 and 10 mg/mL infusions for 60 and 10 s contact time with SARS-CoV-2 resuspended in saliva. Tea polyphenols were measured using the Folin-Ciocalteu assay. SARS-CoV-2 infectivity was quantified on Vero-E6 cell line using TCID50 assay. At 10 mg/mL infusion, black tea showed the highest reduction (3 log, i.e., 99.9%) of infectious SARS-CoV-2 within 10 s. Green, mint medley, eucalyptus-mint, and raspberry zinger teas showed similar inactivation of SARS-CoV-2 (1.5–2 log, i.e., 96–99% reduction). At 40 mg/mL infusions, all five teas showed >3 log reduction in virus infectivity within 10 s. Tea polyphenol but not pH was significantly correlated to virus reduction. Time-of-addition assay revealed that the five teas displayed preventive effects (0.5–1 log, i.e., 68–90% reduction) against SARS-CoV-2 infection of Vero-E6 cells as well as during post-virus infection (1.2–1.9 log, i.e., 94–98%). However, the highest inhibitory effect was observed when the teas were added at the time of virus infection (2–3 log, i.e., 99–99.9%). Our results provide insights into a rapid at-home intervention (tea drinking or gargling) to reduce infectious SARS-CoV-2 load in the oral cavity which might also mitigate infection of the oral mucosa.</p></div>","PeriodicalId":563,"journal":{"name":"Food and Environmental Virology","volume":"16 2","pages":"159 - 170"},"PeriodicalIF":4.1000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Environmental Virology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12560-023-09581-0","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
SARS-CoV-2 infects the oral mucosa and is shed in salivary fluids. Traditionally, tea has been used by various cultures to treat respiratory ailments. The objective of this study was to identify commercially available teas that can rapidly inactivate infectious SARS-CoV-2 in saliva. Initially, tea (n = 24) was prepared as 40 mg/mL infusions and incubated with SARS-CoV-2 resuspended in water, for 5 min at 37 °C. Then, five teas that showed >3 log reduction in virus infectivity were further investigated at 40 and 10 mg/mL infusions for 60 and 10 s contact time with SARS-CoV-2 resuspended in saliva. Tea polyphenols were measured using the Folin-Ciocalteu assay. SARS-CoV-2 infectivity was quantified on Vero-E6 cell line using TCID50 assay. At 10 mg/mL infusion, black tea showed the highest reduction (3 log, i.e., 99.9%) of infectious SARS-CoV-2 within 10 s. Green, mint medley, eucalyptus-mint, and raspberry zinger teas showed similar inactivation of SARS-CoV-2 (1.5–2 log, i.e., 96–99% reduction). At 40 mg/mL infusions, all five teas showed >3 log reduction in virus infectivity within 10 s. Tea polyphenol but not pH was significantly correlated to virus reduction. Time-of-addition assay revealed that the five teas displayed preventive effects (0.5–1 log, i.e., 68–90% reduction) against SARS-CoV-2 infection of Vero-E6 cells as well as during post-virus infection (1.2–1.9 log, i.e., 94–98%). However, the highest inhibitory effect was observed when the teas were added at the time of virus infection (2–3 log, i.e., 99–99.9%). Our results provide insights into a rapid at-home intervention (tea drinking or gargling) to reduce infectious SARS-CoV-2 load in the oral cavity which might also mitigate infection of the oral mucosa.
期刊介绍:
Food and Environmental Virology publishes original articles, notes and review articles on any aspect relating to the transmission of pathogenic viruses via the environment (water, air, soil etc.) and foods. This includes epidemiological studies, identification of novel or emerging pathogens, methods of analysis or characterisation, studies on survival and elimination, and development of procedural controls for industrial processes, e.g. HACCP plans. The journal will cover all aspects of this important area, and encompass studies on any human, animal, and plant pathogenic virus which is capable of transmission via the environment or food.