Suppression of MALAT1 promotes human synovial mesenchymal stem cells enhance chondrogenic differentiation and prevent osteoarthritis of the knee in a rat model via regulating miR-212-5p/MyD88 axis.

IF 3.2 3区 生物学 Q3 CELL BIOLOGY Cell and Tissue Research Pub Date : 2024-03-01 Epub Date: 2024-01-31 DOI:10.1007/s00441-024-03863-0
Zhengyu Gao, Cuicui Guo, Shuai Xiang, Haining Zhang, Yingzhen Wang, Hao Xu
{"title":"Suppression of MALAT1 promotes human synovial mesenchymal stem cells enhance chondrogenic differentiation and prevent osteoarthritis of the knee in a rat model via regulating miR-212-5p/MyD88 axis.","authors":"Zhengyu Gao, Cuicui Guo, Shuai Xiang, Haining Zhang, Yingzhen Wang, Hao Xu","doi":"10.1007/s00441-024-03863-0","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) is one of the most common diseases of the skeleton. Long non-coding RNAs (lncRNAs) are emerging as key players in OA pathogenesis. This work sets out to determine the function of lncRNA MALAT1 in OA and the mechanisms by which it does so. Mesenchymal stem cells isolated from the human synovial membrane are called hSMSCs. The hSMSCs' surface markers were studied using flow cytometry. To determine whether or not hSMSC might differentiate, researchers used a number of different culture settings and labeling techniques. The expression levels of associated genes and proteins were determined using quantitative real-time polymerase chain reaction (RT-qPCR), western blotting (WB), and immunostaining. A dual luciferase reporter experiment and RNA immunoprecipitation (RIP) test demonstrated the direct association between miR-212-5p and MALAT1 or MyD88. MALAT1 was downregulated during the chondrogenic differentiation of hSMSCs, and underexpression of MALAT1 promotes chondrogenesis in hSMSCs. Using dual luciferase reporter and RIP assays facilitated the identification of MALAT1 as a competitive endogenous RNA (ceRNA) that sequesters miR-212-5p. Additionally, the expression of MYD88 was regulated by MALAT1 through direct binding with miR-212-5p. Significantly, the effects of MALAT1 on the chondrogenic differentiation of hSMSCs were counteracted by miR-212-5p/MYD88. Furthermore, our in vivo investigation revealed that the inhibition of MALAT1 mitigated osteoarthritis progression in rat models. In conclusion, the promotion of chondrogenic differentiation in hSMSCs and the protective effect on cartilage tissue in OA can be achieved by suppressing MALAT1, which regulates the miR-212-5p/MyD88 axis.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-024-03863-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoarthritis (OA) is one of the most common diseases of the skeleton. Long non-coding RNAs (lncRNAs) are emerging as key players in OA pathogenesis. This work sets out to determine the function of lncRNA MALAT1 in OA and the mechanisms by which it does so. Mesenchymal stem cells isolated from the human synovial membrane are called hSMSCs. The hSMSCs' surface markers were studied using flow cytometry. To determine whether or not hSMSC might differentiate, researchers used a number of different culture settings and labeling techniques. The expression levels of associated genes and proteins were determined using quantitative real-time polymerase chain reaction (RT-qPCR), western blotting (WB), and immunostaining. A dual luciferase reporter experiment and RNA immunoprecipitation (RIP) test demonstrated the direct association between miR-212-5p and MALAT1 or MyD88. MALAT1 was downregulated during the chondrogenic differentiation of hSMSCs, and underexpression of MALAT1 promotes chondrogenesis in hSMSCs. Using dual luciferase reporter and RIP assays facilitated the identification of MALAT1 as a competitive endogenous RNA (ceRNA) that sequesters miR-212-5p. Additionally, the expression of MYD88 was regulated by MALAT1 through direct binding with miR-212-5p. Significantly, the effects of MALAT1 on the chondrogenic differentiation of hSMSCs were counteracted by miR-212-5p/MYD88. Furthermore, our in vivo investigation revealed that the inhibition of MALAT1 mitigated osteoarthritis progression in rat models. In conclusion, the promotion of chondrogenic differentiation in hSMSCs and the protective effect on cartilage tissue in OA can be achieved by suppressing MALAT1, which regulates the miR-212-5p/MyD88 axis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过调节 miR-212-5p/MyD88 轴,抑制 MALAT1 可促进人滑膜间充质干细胞增强软骨分化并预防大鼠模型中的膝骨关节炎。
骨关节炎(OA)是最常见的骨骼疾病之一。长非编码 RNA(lncRNA)正在成为 OA 发病机制中的关键角色。这项研究旨在确定lncRNA MALAT1在OA中的功能及其作用机制。从人体滑膜中分离出的间充质干细胞被称为hSMSCs。使用流式细胞术研究了hSMSCs的表面标记。为了确定hSMSC是否会分化,研究人员使用了多种不同的培养设置和标记技术。研究人员使用定量实时聚合酶链反应(RT-qPCR)、免疫印迹(WB)和免疫染色法测定了相关基因和蛋白质的表达水平。双重荧光素酶报告实验和 RNA 免疫沉淀(RIP)测试证明了 miR-212-5p 与 MALAT1 或 MyD88 的直接关联。MALAT1在hSMSCs的软骨分化过程中下调,而MALAT1的表达不足会促进hSMSCs的软骨形成。利用双荧光素酶报告和RIP检测,有助于确定MALAT1是一种竞争性内源性RNA(ceRNA),它能封存miR-212-5p。此外,MYD88的表达受MALAT1调节,MALAT1与miR-212-5p直接结合。值得注意的是,MALAT1 对 hSMSCs 软骨分化的影响被 miR-212-5p/MYD88 所抵消。此外,我们的体内研究发现,抑制 MALAT1 可减轻大鼠模型中骨关节炎的进展。总之,通过抑制调控 miR-212-5p/MyD88 轴的 MALAT1,可以促进 hSMSCs 的软骨源分化,并对 OA 中的软骨组织产生保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell and Tissue Research
Cell and Tissue Research 生物-细胞生物学
CiteScore
7.00
自引率
2.80%
发文量
142
审稿时长
1 months
期刊介绍: The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include: - neurobiology - neuroendocrinology - endocrinology - reproductive biology - skeletal and immune systems - development - stem cells - muscle biology.
期刊最新文献
Exploring the contribution of Zfp521/ZNF521 on primary hematopoietic stem/progenitor cells and leukemia progression. Olfactory and gustatory chemical sensor systems in the African turquoise killifish: Insights from morphology. Regulation of the gap junction interplay during postnatal development in the rat epididymis. Revisiting the human umbilical cord epithelium. An atypical epithelial sheath with distinctive features. Mechanical stimulation promotes the maturation of cardiomyocyte-like cells from P19 cells and the function in a mouse model of myocardial infarction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1