Xiao Yang, Peng Liu, Hongcheng He, Dan Qi, Lei Yan
{"title":"Comprehensive analysis of ovarian granulosa cell proteomics and phosphoproteomics in PCOS patients without insulin resistance.","authors":"Xiao Yang, Peng Liu, Hongcheng He, Dan Qi, Lei Yan","doi":"10.1093/molehr/gaae005","DOIUrl":null,"url":null,"abstract":"<p><p>PCOS is a complex and heterogeneous metabolic disorder that affects 6-20% of women of reproductive age. However, research on phosphorylation modification proteomics in PCOS remains lacking. PCOS can be divided into two groups based on the presence or absence of insulin resistance: PCOS with insulin resistance (PCOS-IR) and PCOS non-insulin resistant (PCOS-NIR). This study focused on the group without insulin resistance. Twenty-one PCOS-NIR and 39 control-NIR (Ctrl-NIR) patients were included in this study. All participants underwent ICSI or IVF-embryo transfer (IVF-ET) treatment in a reproductive center from July 2020 to November 2020. During oocyte retrieval, fresh follicular fluid was aspirated, collected, and sent to the laboratory for analysis of the granulosa cells. A 4D-label-free proteome quantification method was performed in this study; this was used to analyze protein enzymatic peptide fragments by liquid chromatography-mass spectrometry (LC-MS). Bioinformatic analysis was performed on differentially expressed proteins (DEPs) and differentially phosphorylated proteins (DPPs). A total of 713 DEPs were identified between the two groups, including 293 upregulated and 420 downregulated DEPs in the PCOS-NIR group. There were 522 and 159 proteins with increased and decreased phosphorylation, respectively, in the PCOS-NIR group. After analyzing the different phosphorylation modification sites, 933 sites with upregulated and 211 sites with downregulated phosphorylation were found in the PCOS-NIR group. In this study, we describe the quantitative protein expression profiles and phosphorylation-modified protein expression profiles of ovarian granulosa cells from patients with PCOS-NIR, providing a new research perspective for these patients. Further studies are required to elucidate the role of protein phosphorylation in PCOS.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular human reproduction","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/molehr/gaae005","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
PCOS is a complex and heterogeneous metabolic disorder that affects 6-20% of women of reproductive age. However, research on phosphorylation modification proteomics in PCOS remains lacking. PCOS can be divided into two groups based on the presence or absence of insulin resistance: PCOS with insulin resistance (PCOS-IR) and PCOS non-insulin resistant (PCOS-NIR). This study focused on the group without insulin resistance. Twenty-one PCOS-NIR and 39 control-NIR (Ctrl-NIR) patients were included in this study. All participants underwent ICSI or IVF-embryo transfer (IVF-ET) treatment in a reproductive center from July 2020 to November 2020. During oocyte retrieval, fresh follicular fluid was aspirated, collected, and sent to the laboratory for analysis of the granulosa cells. A 4D-label-free proteome quantification method was performed in this study; this was used to analyze protein enzymatic peptide fragments by liquid chromatography-mass spectrometry (LC-MS). Bioinformatic analysis was performed on differentially expressed proteins (DEPs) and differentially phosphorylated proteins (DPPs). A total of 713 DEPs were identified between the two groups, including 293 upregulated and 420 downregulated DEPs in the PCOS-NIR group. There were 522 and 159 proteins with increased and decreased phosphorylation, respectively, in the PCOS-NIR group. After analyzing the different phosphorylation modification sites, 933 sites with upregulated and 211 sites with downregulated phosphorylation were found in the PCOS-NIR group. In this study, we describe the quantitative protein expression profiles and phosphorylation-modified protein expression profiles of ovarian granulosa cells from patients with PCOS-NIR, providing a new research perspective for these patients. Further studies are required to elucidate the role of protein phosphorylation in PCOS.
期刊介绍:
MHR publishes original research reports, commentaries and reviews on topics in the basic science of reproduction, including: reproductive tract physiology and pathology; gonad function and gametogenesis; fertilization; embryo development; implantation; and pregnancy and parturition. Irrespective of the study subject, research papers should have a mechanistic aspect.