PM2.5-induced DNA oxidative stress in A549 cells and regulating mechanisms by GST DNA methylation and Keap1/Nrf2 pathway.

IF 3.2 4区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics Toxicology Mechanisms and Methods Pub Date : 2024-06-01 Epub Date: 2024-01-31 DOI:10.1080/15376516.2024.2307967
Ruijin Li, Chao Zhao, Yuexia Zhang, Wei Huang, Jiayi Wang, Guodong Cao, Zongwei Cai
{"title":"PM<sub>2.5</sub>-induced DNA oxidative stress in A549 cells and regulating mechanisms by GST DNA methylation and Keap1/Nrf2 pathway.","authors":"Ruijin Li, Chao Zhao, Yuexia Zhang, Wei Huang, Jiayi Wang, Guodong Cao, Zongwei Cai","doi":"10.1080/15376516.2024.2307967","DOIUrl":null,"url":null,"abstract":"<p><p>Fine particulate matter (PM<sub>2.5</sub>) increases the risks of lung cancer. Epigenetics provides a new toxicology mechanism for the adverse health effects of PM<sub>2.5</sub>. However, the regulating mechanisms of PM<sub>2.5</sub> exposure on candidate gene DNA methylation changes in the development of lung cancer remain unclear. Abnormal expression of the glutathione S transferase (GST) gene is associated with cancer. However, the relationship between PM<sub>2.5</sub> and DNA methylation-mediated GST gene expression is not well understood. In this study, we performed GST DNA methylation analysis and GST-related gene expression in human A549 cells exposed to PM<sub>2.5</sub> (0, 50, 100 µg/mL, from Taiyuan, China) for 24 h (<i>n</i> = 4). We found that PM<sub>2.5</sub> may cause DNA oxidative damage to cells and the elevation of GSTP1 promotes cell resistance to reactive oxygen species (ROS). The Kelch-1ike ECH-associated protein l (Keap1)/nuclear factor NF-E2-related factor 2 (Nrf2) pathway activates the GSTP1. The decrease in the DNA methylation level of the GSTP1 gene enhances GSTP1 expression. GST DNA methylation is associated with reduced levels of 5-methylcytosine (5mC), DNA methyltransferase 1 (DNMT1), and histone deacetylases 3 (HDAC3). The GSTM1 was not sensitive to PM<sub>2.5</sub> stimulation. Our findings suggest that PM<sub>2.5</sub> activates GSTP1 to defend PM<sub>2.5</sub>-induced ROS and 8-hydroxy-deoxyguanosine (8-OHdG) formation through the Keap1/Nrf2 signaling pathway and GSTP1 DNA methylation.</p>","PeriodicalId":23177,"journal":{"name":"Toxicology Mechanisms and Methods","volume":" ","pages":"517-526"},"PeriodicalIF":3.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2024.2307967","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Fine particulate matter (PM2.5) increases the risks of lung cancer. Epigenetics provides a new toxicology mechanism for the adverse health effects of PM2.5. However, the regulating mechanisms of PM2.5 exposure on candidate gene DNA methylation changes in the development of lung cancer remain unclear. Abnormal expression of the glutathione S transferase (GST) gene is associated with cancer. However, the relationship between PM2.5 and DNA methylation-mediated GST gene expression is not well understood. In this study, we performed GST DNA methylation analysis and GST-related gene expression in human A549 cells exposed to PM2.5 (0, 50, 100 µg/mL, from Taiyuan, China) for 24 h (n = 4). We found that PM2.5 may cause DNA oxidative damage to cells and the elevation of GSTP1 promotes cell resistance to reactive oxygen species (ROS). The Kelch-1ike ECH-associated protein l (Keap1)/nuclear factor NF-E2-related factor 2 (Nrf2) pathway activates the GSTP1. The decrease in the DNA methylation level of the GSTP1 gene enhances GSTP1 expression. GST DNA methylation is associated with reduced levels of 5-methylcytosine (5mC), DNA methyltransferase 1 (DNMT1), and histone deacetylases 3 (HDAC3). The GSTM1 was not sensitive to PM2.5 stimulation. Our findings suggest that PM2.5 activates GSTP1 to defend PM2.5-induced ROS and 8-hydroxy-deoxyguanosine (8-OHdG) formation through the Keap1/Nrf2 signaling pathway and GSTP1 DNA methylation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PM2.5诱导的A549细胞DNA氧化应激及GST DNA甲基化和Keap1/Nrf2途径的调控机制
细颗粒物(PM2.5)会增加罹患肺癌的风险。表观遗传学为 PM2.5 对健康的不良影响提供了一种新的毒理学机制。然而,PM2.5暴露对肺癌发生过程中候选基因DNA甲基化变化的调节机制仍不清楚。谷胱甘肽 S 转移酶(GST)基因的异常表达与癌症有关。然而,PM2.5 与 DNA 甲基化介导的 GST 基因表达之间的关系尚不十分清楚。在本研究中,我们对暴露于 PM2.5(0、50、100 µg/mL,产自中国太原)24 小时(n = 4)的人 A549 细胞进行了 GST DNA 甲基化分析和 GST 相关基因的表达。我们发现,PM2.5 可能会对细胞造成 DNA 氧化损伤,而 GSTP1 的升高会促进细胞对活性氧(ROS)的抵抗力。Kelch-1ike ECH相关蛋白l(Keap1)/核因子NF-E2相关因子2(Nrf2)通路激活了GSTP1。GSTP1 基因 DNA 甲基化水平的降低会增强 GSTP1 的表达。GST DNA 甲基化与 5-甲基胞嘧啶(5mC)、DNA 甲基转移酶 1(DNMT1)和组蛋白去乙酰化酶 3(HDAC3)水平的降低有关。GSTM1 对 PM2.5 的刺激不敏感。我们的研究结果表明,PM2.5通过Keap1/Nrf2信号通路和GSTP1 DNA甲基化激活GSTP1,以防御PM2.5诱导的ROS和8-羟基脱氧鸟苷(8-OHdG)的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
3.10%
发文量
66
审稿时长
6-12 weeks
期刊介绍: Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy. Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment. A variety of research methods are discussed, including: In vivo studies with standard and alternative species In vitro studies and alternative methodologies Molecular, biochemical, and cellular techniques Pharmacokinetics and pharmacodynamics Mathematical modeling and computer programs Forensic analyses Risk assessment Data collection and analysis.
期刊最新文献
Mechanistic paradigms of immunotoxicity, triggered by nanoparticles - a review. From historical drugs to present perils: UHPLC-QqQ-MS/MS determination of methaqualone and its designer analogs (NPS) with comprehensive fragmentation pathways study (QTOF). Disposable electronic cigarettes - chemical composition and health effects of their use. A systematic review. Decoding the possible mechanism of action of Paeoniflorigenone in combating Aflatoxin B1-induced liver cancer: an investigation using network pharmacology and bioinformatics analysis. Assessment of genotoxic damage induced by exposure to binary mixtures of polycyclic aromatic hydrocarbons and three heavy metals in male mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1