{"title":"Excitation-Inhibition Balance, Neural Criticality, and Activities in Neuronal Circuits.","authors":"Junhao Liang, Zhuda Yang, Changsong Zhou","doi":"10.1177/10738584231221766","DOIUrl":null,"url":null,"abstract":"<p><p>Neural activities in local circuits exhibit complex and multilevel dynamic features. Individual neurons spike irregularly, which is believed to originate from receiving balanced amounts of excitatory and inhibitory inputs, known as the <i>excitation-inhibition balance</i>. The spatial-temporal cascades of clustered neuronal spikes occur in variable sizes and durations, manifested as neural avalanches with scale-free features. These may be explained by the neural criticality hypothesis, which posits that neural systems operate around the transition between distinct dynamic states. Here, we summarize the experimental evidence for and the underlying theory of excitation-inhibition balance and neural criticality. Furthermore, we review recent studies of excitatory-inhibitory networks with synaptic kinetics as a simple solution to reconcile these two apparently distinct theories in a single circuit model. This provides a more unified understanding of multilevel neural activities in local circuits, from spontaneous to stimulus-response dynamics.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"10738584231221766"},"PeriodicalIF":3.5000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscientist","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10738584231221766","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neural activities in local circuits exhibit complex and multilevel dynamic features. Individual neurons spike irregularly, which is believed to originate from receiving balanced amounts of excitatory and inhibitory inputs, known as the excitation-inhibition balance. The spatial-temporal cascades of clustered neuronal spikes occur in variable sizes and durations, manifested as neural avalanches with scale-free features. These may be explained by the neural criticality hypothesis, which posits that neural systems operate around the transition between distinct dynamic states. Here, we summarize the experimental evidence for and the underlying theory of excitation-inhibition balance and neural criticality. Furthermore, we review recent studies of excitatory-inhibitory networks with synaptic kinetics as a simple solution to reconcile these two apparently distinct theories in a single circuit model. This provides a more unified understanding of multilevel neural activities in local circuits, from spontaneous to stimulus-response dynamics.
期刊介绍:
Edited by Stephen G. Waxman, The Neuroscientist (NRO) reviews and evaluates the noteworthy advances and key trends in molecular, cellular, developmental, behavioral systems, and cognitive neuroscience in a unique disease-relevant format. Aimed at basic neuroscientists, neurologists, neurosurgeons, and psychiatrists in research, academic, and clinical settings, The Neuroscientist reviews and updates the most important new and emerging basic and clinical neuroscience research.