Account credibility inference based on news-sharing networks

IF 3 2区 计算机科学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS EPJ Data Science Pub Date : 2024-01-31 DOI:10.1140/epjds/s13688-024-00450-9
Bao Tran Truong, Oliver Melbourne Allen, Filippo Menczer
{"title":"Account credibility inference based on news-sharing networks","authors":"Bao Tran Truong, Oliver Melbourne Allen, Filippo Menczer","doi":"10.1140/epjds/s13688-024-00450-9","DOIUrl":null,"url":null,"abstract":"<p>The spread of misinformation poses a threat to the social media ecosystem. Effective countermeasures to mitigate this threat require that social media platforms be able to accurately detect low-credibility accounts even before the content they share can be classified as misinformation. Here we present methods to infer account credibility from information diffusion patterns, in particular leveraging two networks: the reshare network, capturing an account’s trust in other accounts, and the bipartite account-source network, capturing an account’s trust in media sources. We extend network centrality measures and graph embedding techniques, systematically comparing these algorithms on data from diverse contexts and social media platforms. We demonstrate that both kinds of trust networks provide useful signals for estimating account credibility. Some of the proposed methods yield high accuracy, providing promising solutions to promote the dissemination of reliable information in online communities. Two kinds of homophily emerge from our results: accounts tend to have similar credibility if they reshare each other’s content or share content from similar sources. Our methodology invites further investigation into the relationship between accounts and news sources to better characterize misinformation spreaders.</p>","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"23 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Data Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1140/epjds/s13688-024-00450-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The spread of misinformation poses a threat to the social media ecosystem. Effective countermeasures to mitigate this threat require that social media platforms be able to accurately detect low-credibility accounts even before the content they share can be classified as misinformation. Here we present methods to infer account credibility from information diffusion patterns, in particular leveraging two networks: the reshare network, capturing an account’s trust in other accounts, and the bipartite account-source network, capturing an account’s trust in media sources. We extend network centrality measures and graph embedding techniques, systematically comparing these algorithms on data from diverse contexts and social media platforms. We demonstrate that both kinds of trust networks provide useful signals for estimating account credibility. Some of the proposed methods yield high accuracy, providing promising solutions to promote the dissemination of reliable information in online communities. Two kinds of homophily emerge from our results: accounts tend to have similar credibility if they reshare each other’s content or share content from similar sources. Our methodology invites further investigation into the relationship between accounts and news sources to better characterize misinformation spreaders.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于新闻共享网络的账户可信度推断
错误信息的传播对社交媒体生态系统构成威胁。要想采取有效的应对措施来减轻这种威胁,社交媒体平台就必须在低可信度账户分享的内容被归类为错误信息之前就能准确地检测到它们。在此,我们提出了从信息传播模式推断账户可信度的方法,特别是利用两个网络:再分享网络(捕捉账户对其他账户的信任)和二元账户-来源网络(捕捉账户对媒体来源的信任)。我们扩展了网络中心性度量和图嵌入技术,在来自不同环境和社交媒体平台的数据上系统地比较了这些算法。我们证明,这两种信任网络都能为估计账户可信度提供有用的信号。所提出的一些方法具有很高的准确性,为促进可靠信息在网络社区中的传播提供了有前途的解决方案。我们的研究结果表明了两种同亲关系:如果账户之间相互分享内容或分享来自相似来源的内容,那么这些账户往往具有相似的可信度。我们的方法有助于进一步研究账户与新闻来源之间的关系,从而更好地描述错误信息传播者的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EPJ Data Science
EPJ Data Science MATHEMATICS, INTERDISCIPLINARY APPLICATIONS -
CiteScore
6.10
自引率
5.60%
发文量
53
审稿时长
13 weeks
期刊介绍: EPJ Data Science covers a broad range of research areas and applications and particularly encourages contributions from techno-socio-economic systems, where it comprises those research lines that now regard the digital “tracks” of human beings as first-order objects for scientific investigation. Topics include, but are not limited to, human behavior, social interaction (including animal societies), economic and financial systems, management and business networks, socio-technical infrastructure, health and environmental systems, the science of science, as well as general risk and crisis scenario forecasting up to and including policy advice.
期刊最新文献
Estimating work engagement from online chat tools Language and the use of law are predictive of judge gender and seniority Connection between climatic change and international food prices: evidence from robust long-range cross-correlation and variable-lag transfer entropy with sliding windows approach Keep your friends close, and your enemies closer: structural properties of negative relationships on Twitter Analyzing user ideologies and shared news during the 2019 argentinian elections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1