Songgaojun Deng, Olivier Sprangers, Ming Li, Sebastian Schelter, Maarten de Rijke
{"title":"Domain Generalization in Time Series Forecasting","authors":"Songgaojun Deng, Olivier Sprangers, Ming Li, Sebastian Schelter, Maarten de Rijke","doi":"10.1145/3643035","DOIUrl":null,"url":null,"abstract":"<p>Domain generalization aims to design models that can effectively generalize to unseen target domains by learning from observed source domains. Domain generalization poses a significant challenge for time series data, due to varying data distributions and temporal dependencies. Existing approaches to domain generalization are not designed for time series data, which often results in suboptimal or unstable performance when confronted with diverse temporal patterns and complex data characteristics. We propose a novel approach to tackle the problem of domain generalization in time series forecasting. We focus on a scenario where time series domains share certain common attributes and exhibit no abrupt distribution shifts. Our method revolves around the incorporation of a key regularization term into an existing time series forecasting model: <i>domain discrepancy regularization</i>. In this way, we aim to enforce consistent performance across different domains that exhibit distinct patterns. We calibrate the regularization term by investigating the performance within individual domains and propose the <i>domain discrepancy regularization with domain difficulty awareness</i>. We demonstrate the effectiveness of our method on multiple datasets, including synthetic and real-world time series datasets from diverse domains such as retail, transportation, and finance. Our method is compared against traditional methods, deep learning models, and domain generalization approaches to provide comprehensive insights into its performance. In these experiments, our method showcases superior performance, surpassing both the base model and competing domain generalization models across all datasets. Furthermore, our method is highly general and can be applied to various time series models.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"172 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3643035","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Domain generalization aims to design models that can effectively generalize to unseen target domains by learning from observed source domains. Domain generalization poses a significant challenge for time series data, due to varying data distributions and temporal dependencies. Existing approaches to domain generalization are not designed for time series data, which often results in suboptimal or unstable performance when confronted with diverse temporal patterns and complex data characteristics. We propose a novel approach to tackle the problem of domain generalization in time series forecasting. We focus on a scenario where time series domains share certain common attributes and exhibit no abrupt distribution shifts. Our method revolves around the incorporation of a key regularization term into an existing time series forecasting model: domain discrepancy regularization. In this way, we aim to enforce consistent performance across different domains that exhibit distinct patterns. We calibrate the regularization term by investigating the performance within individual domains and propose the domain discrepancy regularization with domain difficulty awareness. We demonstrate the effectiveness of our method on multiple datasets, including synthetic and real-world time series datasets from diverse domains such as retail, transportation, and finance. Our method is compared against traditional methods, deep learning models, and domain generalization approaches to provide comprehensive insights into its performance. In these experiments, our method showcases superior performance, surpassing both the base model and competing domain generalization models across all datasets. Furthermore, our method is highly general and can be applied to various time series models.
期刊介绍:
TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.