Elevation Changes in Restored Marshes at Poplar Island, Chesapeake Bay, MD: I. Trends and Drivers of Spatial Variability

IF 2.3 3区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Estuaries and Coasts Pub Date : 2024-01-31 DOI:10.1007/s12237-023-01319-2
{"title":"Elevation Changes in Restored Marshes at Poplar Island, Chesapeake Bay, MD: I. Trends and Drivers of Spatial Variability","authors":"","doi":"10.1007/s12237-023-01319-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Tidal marshes provide numerous ecosystem services, but are threatened by recent increases in global sea level rise (SLR). Marsh restoration and creation are important strategies for mitigating marsh loss, restoring ecosystem services, increasing coastal community resilience, and providing much needed habitat for threatened species. Dredged material resulting from navigation channel maintenance can provide a substrate for these restoration projects. Few studies, however, have addressed the sustainability of these marshes. The Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island, where fine-grained, nutrient-rich dredged material from upper Chesapeake Bay is being used to create &gt; 302 ha of tidal marshes, provides a case study. The low supply of inorganic sediment is counteracted by abundant nutrients, stimulating high rates of organic matter production and elevation change. Using &gt; 10 years of data from 39 surface elevation tables, we found that the mean low marsh rate of elevation change (7.7 ± 3.21 mm year<sup>−1</sup>) was double the mean high marsh rate (3.6 ± 0.47 mm year<sup>−1</sup>) and exceeded the natural reference marsh (3.0 ± 2.28 mm year<sup>−1</sup>) and relative SLR (5.7 mm year<sup>−1</sup>). By stimulating organic matter production, the high nutrient substrate appears to offset the low inorganic sediment inputs in mid-Chesapeake Bay. Spatial variability was correlated with initial elevation, but was also influenced by local factors that may affect sediment redistribution within the marshes.</p>","PeriodicalId":11921,"journal":{"name":"Estuaries and Coasts","volume":"172 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estuaries and Coasts","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12237-023-01319-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Tidal marshes provide numerous ecosystem services, but are threatened by recent increases in global sea level rise (SLR). Marsh restoration and creation are important strategies for mitigating marsh loss, restoring ecosystem services, increasing coastal community resilience, and providing much needed habitat for threatened species. Dredged material resulting from navigation channel maintenance can provide a substrate for these restoration projects. Few studies, however, have addressed the sustainability of these marshes. The Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island, where fine-grained, nutrient-rich dredged material from upper Chesapeake Bay is being used to create > 302 ha of tidal marshes, provides a case study. The low supply of inorganic sediment is counteracted by abundant nutrients, stimulating high rates of organic matter production and elevation change. Using > 10 years of data from 39 surface elevation tables, we found that the mean low marsh rate of elevation change (7.7 ± 3.21 mm year−1) was double the mean high marsh rate (3.6 ± 0.47 mm year−1) and exceeded the natural reference marsh (3.0 ± 2.28 mm year−1) and relative SLR (5.7 mm year−1). By stimulating organic matter production, the high nutrient substrate appears to offset the low inorganic sediment inputs in mid-Chesapeake Bay. Spatial variability was correlated with initial elevation, but was also influenced by local factors that may affect sediment redistribution within the marshes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
马里兰州切萨皮克湾白杨岛恢复沼泽地的海拔变化: I. 空间变化趋势和驱动因素
摘要 潮汐沼泽提供了众多生态系统服务,但却受到近期全球海平面上升(SLR)的威胁。沼泽的恢复和营造是减轻沼泽损失、恢复生态系统服务、提高沿海社区恢复能力以及为受威胁物种提供急需的栖息地的重要策略。航道维护产生的疏浚物可为这些恢复项目提供基质。然而,很少有研究涉及这些沼泽的可持续性。位于白杨岛的 Paul S. Sarbanes 生态系统恢复项目提供了一个案例研究,该项目利用切萨皮克湾上游细粒度、富含营养物质的疏浚物来形成 302 公顷的潮汐沼泽。丰富的营养物质抵消了无机沉积物的低供应量,刺激了有机物质的高速生产和海拔变化。利用 39 个地表海拔表中的 10 年数据,我们发现低海拔沼泽的平均海拔变化率(7.7 ± 3.21 毫米/年-1)是高海拔沼泽平均海拔变化率(3.6 ± 0.47 毫米/年-1)的两倍,超过了自然参考沼泽(3.0 ± 2.28 毫米/年-1)和相对可持续土地覆盖率(5.7 毫米/年-1)。通过刺激有机物的生产,高营养基质似乎抵消了切萨皮克湾中部的低无机沉积物输入。空间变化与初始海拔有关,但也受到当地因素的影响,这些因素可能会影响沼泽内沉积物的重新分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Estuaries and Coasts
Estuaries and Coasts 环境科学-海洋与淡水生物学
CiteScore
5.60
自引率
11.10%
发文量
107
审稿时长
12-24 weeks
期刊介绍: Estuaries and Coasts is the journal of the Coastal and Estuarine Research Federation (CERF). Begun in 1977 as Chesapeake Science, the journal has gradually expanded its scope and circulation. Today, the journal publishes scholarly manuscripts on estuarine and near coastal ecosystems at the interface between the land and the sea where there are tidal fluctuations or sea water is diluted by fresh water. The interface is broadly defined to include estuaries and nearshore coastal waters including lagoons, wetlands, tidal fresh water, shores and beaches, but not the continental shelf. The journal covers research on physical, chemical, geological or biological processes, as well as applications to management of estuaries and coasts. The journal publishes original research findings, reviews and perspectives, techniques, comments, and management applications. Estuaries and Coasts will consider properly carried out studies that present inconclusive findings or document a failed replication of previously published work. Submissions that are primarily descriptive, strongly place-based, or only report on development of models or new methods without detailing their applications fall outside the scope of the journal.
期刊最新文献
The Role of Zooplankton Community Composition in Fecal Pellet Carbon Production in the York River Estuary, Chesapeake Bay. Influence of Rivers, Tides, and Tidal Wetlands on Estuarine Carbonate System Dynamics Dwarf Seahorse (Hippocampus zosterae) Density, Distribution, and Habitat Use in Texas Tidal Impoundment and Mangrove Dieback at Cabbage Tree Basin, NSW: Drivers of Change and Tailored Management for the Future Clutch Size, but Not Growth Rate, Differs Between Genetically Well-Mixed Populations of the Mysid Neomysis americana (S.I. Smith, 1873) in Chesapeake Bay Tributaries with Differing Water Quality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1