Othman El Balghiti, Adam N. Elmachtoub, Paul Grigas, Ambuj Tewari
{"title":"Generalization Bounds in the Predict-Then-Optimize Framework","authors":"Othman El Balghiti, Adam N. Elmachtoub, Paul Grigas, Ambuj Tewari","doi":"10.1287/moor.2022.1330","DOIUrl":null,"url":null,"abstract":"The predict-then-optimize framework is fundamental in many practical settings: predict the unknown parameters of an optimization problem and then solve the problem using the predicted values of the parameters. A natural loss function in this environment is to consider the cost of the decisions induced by the predicted parameters in contrast to the prediction error of the parameters. This loss function is referred to as the smart predict-then-optimize (SPO) loss. In this work, we seek to provide bounds on how well the performance of a prediction model fit on training data generalizes out of sample in the context of the SPO loss. Because the SPO loss is nonconvex and non-Lipschitz, standard results for deriving generalization bounds do not apply. We first derive bounds based on the Natarajan dimension that, in the case of a polyhedral feasible region, scale at most logarithmically in the number of extreme points but, in the case of a general convex feasible region, have linear dependence on the decision dimension. By exploiting the structure of the SPO loss function and a key property of the feasible region, which we denote as the strength property, we can dramatically improve the dependence on the decision and feature dimensions. Our approach and analysis rely on placing a margin around problematic predictions that do not yield unique optimal solutions and then providing generalization bounds in the context of a modified margin SPO loss function that is Lipschitz continuous. Finally, we characterize the strength property and show that the modified SPO loss can be computed efficiently for both strongly convex bodies and polytopes with an explicit extreme point representation.Funding: O. El Balghiti thanks Rayens Capital for their support. A. N. Elmachtoub acknowledges the support of the National Science Foundation (NSF) [Grant CMMI-1763000]. P. Grigas acknowledges the support of NSF [Grants CCF-1755705 and CMMI-1762744]. A. Tewari acknowledges the support of the NSF [CAREER grant IIS-1452099] and a Sloan Research Fellowship.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2022.1330","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The predict-then-optimize framework is fundamental in many practical settings: predict the unknown parameters of an optimization problem and then solve the problem using the predicted values of the parameters. A natural loss function in this environment is to consider the cost of the decisions induced by the predicted parameters in contrast to the prediction error of the parameters. This loss function is referred to as the smart predict-then-optimize (SPO) loss. In this work, we seek to provide bounds on how well the performance of a prediction model fit on training data generalizes out of sample in the context of the SPO loss. Because the SPO loss is nonconvex and non-Lipschitz, standard results for deriving generalization bounds do not apply. We first derive bounds based on the Natarajan dimension that, in the case of a polyhedral feasible region, scale at most logarithmically in the number of extreme points but, in the case of a general convex feasible region, have linear dependence on the decision dimension. By exploiting the structure of the SPO loss function and a key property of the feasible region, which we denote as the strength property, we can dramatically improve the dependence on the decision and feature dimensions. Our approach and analysis rely on placing a margin around problematic predictions that do not yield unique optimal solutions and then providing generalization bounds in the context of a modified margin SPO loss function that is Lipschitz continuous. Finally, we characterize the strength property and show that the modified SPO loss can be computed efficiently for both strongly convex bodies and polytopes with an explicit extreme point representation.Funding: O. El Balghiti thanks Rayens Capital for their support. A. N. Elmachtoub acknowledges the support of the National Science Foundation (NSF) [Grant CMMI-1763000]. P. Grigas acknowledges the support of NSF [Grants CCF-1755705 and CMMI-1762744]. A. Tewari acknowledges the support of the NSF [CAREER grant IIS-1452099] and a Sloan Research Fellowship.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.