Clustering and Geodesic Scaling of Dissimilarities on the Spherical Surface

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-01-30 DOI:10.1007/s13253-023-00597-4
{"title":"Clustering and Geodesic Scaling of Dissimilarities on the Spherical Surface","authors":"","doi":"10.1007/s13253-023-00597-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Spherical embedding is an important tool in several fields of data analysis, including environmental data, spatial statistics, text mining, gene expression analysis, medical research and, in general, areas in which the geodesic distance is a relevant factor. Many data acquisition technologies are related to massive data acquisition, and these high-dimensional vectors are often normalised and transformed into spherical data. In this representation of data on spherical surfaces, multidimensional scaling plays an important role. Traditionally, the methods of clustering and representation have been combined, since the precision of the representation tends to decrease when a large number of objects are involved, which makes interpretation difficult. In this paper, we present a model that partitions objects into classes while simultaneously representing the cluster centres on a spherical surface based on geodesic distances. The model combines a partition algorithm based on the approximation of dissimilarities to geodesic distances with a representation procedure for geodesic distances. In this process, the dissimilarities are transformed in order to optimise the radius of the sphere. The efficiency of the procedure described is analysed by means of an extensive Monte Carlo experiment, and its usefulness is illustrated for real data sets. Supplementary material to this paper is provided online.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13253-023-00597-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spherical embedding is an important tool in several fields of data analysis, including environmental data, spatial statistics, text mining, gene expression analysis, medical research and, in general, areas in which the geodesic distance is a relevant factor. Many data acquisition technologies are related to massive data acquisition, and these high-dimensional vectors are often normalised and transformed into spherical data. In this representation of data on spherical surfaces, multidimensional scaling plays an important role. Traditionally, the methods of clustering and representation have been combined, since the precision of the representation tends to decrease when a large number of objects are involved, which makes interpretation difficult. In this paper, we present a model that partitions objects into classes while simultaneously representing the cluster centres on a spherical surface based on geodesic distances. The model combines a partition algorithm based on the approximation of dissimilarities to geodesic distances with a representation procedure for geodesic distances. In this process, the dissimilarities are transformed in order to optimise the radius of the sphere. The efficiency of the procedure described is analysed by means of an extensive Monte Carlo experiment, and its usefulness is illustrated for real data sets. Supplementary material to this paper is provided online.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
球面上异质性的聚类和大地缩放
摘要 球形嵌入是多个数据分析领域的重要工具,包括环境数据、空间统计、文本挖掘、基因表达分析、医学研究以及一般以大地距离为相关因素的领域。许多数据采集技术都与海量数据采集有关,这些高维矢量通常会被归一化并转换成球形数据。在球面数据的表示中,多维缩放起着重要作用。传统上,聚类和表示的方法是结合在一起的,因为当涉及大量对象时,表示的精度往往会降低,从而给解释带来困难。在本文中,我们提出了一种将物体划分为不同类别的模型,同时根据大地距离在球面上表示聚类中心。该模型结合了基于相似度与大地测量距离近似的划分算法和大地测量距离的表示程序。在这一过程中,为了优化球面的半径,对相似度进行了转换。本文通过大量蒙特卡罗实验分析了所述程序的效率,并在实际数据集上说明了该程序的实用性。本文的补充材料可在线查阅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1