Analog Circuit Sizing Using Machine Learning Based Transistor Circuit Model

Alireza Bagheri Rajeoni
{"title":"Analog Circuit Sizing Using Machine Learning Based Transistor Circuit Model","authors":"Alireza Bagheri Rajeoni","doi":"arxiv-2401.16425","DOIUrl":null,"url":null,"abstract":"In this work, a new method for designing an analog circuit for deep\nsub-micron CMOS fabrication processes is proposed. The proposed method\nleverages the regression algorithms with the transistor circuit model to size a\ntransistor in 0.18 um technology fast and without using simulation software.\nThreshold voltage, output resistance, and the product of mobility and oxide\ncapacitance are key parameters in the transistor circuit model to size a\ntransistor. For nano-scale transistors, however, these parameters are nonlinear\nwith respect to electrical and physical characteristics of transistors and\ncircuit simulator is needed to find the value of these parameters and therefore\nthe design time increases. Regression analysis is utilized to predict values of\nthese parameters. We demonstrate the performance of the proposed method by\ndesigning a Current Feedback Instrumentational Amplifier (CFIA). We show that\nthe presented method accomplishes higher than 90% accuracy in predicting the\ndesired value of W. It reduces the design time over 97% compared to\nconventional methods. The designed circuit using the proposed method consumes\n5.76 uW power and has a Common Mode Rejection Ratio (CMRR) of 35.83 dB and it\nresults in achieving 8.17 V/V gain.","PeriodicalId":501310,"journal":{"name":"arXiv - CS - Other Computer Science","volume":"15 2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Other Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.16425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a new method for designing an analog circuit for deep sub-micron CMOS fabrication processes is proposed. The proposed method leverages the regression algorithms with the transistor circuit model to size a transistor in 0.18 um technology fast and without using simulation software. Threshold voltage, output resistance, and the product of mobility and oxide capacitance are key parameters in the transistor circuit model to size a transistor. For nano-scale transistors, however, these parameters are nonlinear with respect to electrical and physical characteristics of transistors and circuit simulator is needed to find the value of these parameters and therefore the design time increases. Regression analysis is utilized to predict values of these parameters. We demonstrate the performance of the proposed method by designing a Current Feedback Instrumentational Amplifier (CFIA). We show that the presented method accomplishes higher than 90% accuracy in predicting the desired value of W. It reduces the design time over 97% compared to conventional methods. The designed circuit using the proposed method consumes 5.76 uW power and has a Common Mode Rejection Ratio (CMRR) of 35.83 dB and it results in achieving 8.17 V/V gain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于机器学习的晶体管电路模型确定模拟电路规模
本研究提出了一种针对深亚微米 CMOS 制造工艺设计模拟电路的新方法。阈值电压、输出电阻以及迁移率和氧化电容的乘积是晶体管电路模型中决定晶体管尺寸的关键参数。然而,对于纳米级晶体管来说,这些参数与晶体管的电气和物理特性是非线性的,因此需要电路模拟器来找出这些参数的值,从而增加了设计时间。我们利用回归分析来预测这些参数的值。我们通过设计电流反馈仪表放大器 (CFIA) 演示了所提方法的性能。与传统方法相比,该方法缩短了 97% 以上的设计时间。使用该方法设计的电路功耗为 5.76 uW,共模抑制比 (CMRR) 为 35.83 dB,增益为 8.17 V/V。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Intelligence-based Smart Port Logistics Metaverse for Enhancing Productivity, Environment, and Safety in Port Logistics: A Case Study of Busan Port Evaluating the Usability of Qualified Electronic Signatures: Systematized Use Cases and Design Paradigms A Brief Discussion on the Philosophical Principles and Development Directions of Data Circulation Predicting Star Scientists in the Field of Artificial Intelligence: A Machine Learning Approach A Match Made in Semantics: Physics-infused Digital Twins for Smart Building Automation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1